Sains Malaysiana
52(1)(2023): 129-138
http://doi.org/10.17576/jsm-2023-5201-10
Adsorption
Isotherm and Surface Analysis for the Carbonate Formation on Nano Coral-Shaped
Iron(Iii) Oxide
(Isoterma
Penjerapan dan Analisis Permukaan bagi Pembentukan Karbonat di atas Ferum(Iii)
Oksida Berbentuk Karang Nano)
AZIZUL HAKIM LAHURI1,*,
MOHD AMBAR YARMO2, NORAZZIZI NORDIN3, NORLIZA DZAKARIA4,
ADELINE HWONG ING ING5 & SOPHIA JELINA STANLEY KUDA5
1Department of Science and Technology,
Universiti Putra Malaysia Bintulu Kampus, Nyabau Road, P.O Box 396, 97008
Bintulu, Sarawak, Malaysia
2Department of Chemical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3School of Chemical Sciences, Universiti Sains
Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
4School of Chemistry and Environment, Faculty
of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan,
Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan
Darul Khusus, Malaysia
5Faculty of Resource Science and Technology,
Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
Received: 22 March 2022/Accepted: 25 June 2022
Abstract
The α-Fe2O3 was synthesized
using the hydrolysis method to obtain the nano coral-shaped morphology. The
adsorption isotherm and surface analysis upon CO2 adsorption were
identified. The adsorption capacity for nano coral-shaped α-Fe2O3 was measured at 8.66 cm3/g
(17.00 mg/g). Experimental data from CO2 adsorption isotherm at 25 ℃ best fits with the Freundlich isotherm
model which implies the adsorption process is
favorable and the multilayer adsorption on the heterogeneous surface. A
decrease in the α-Fe2O3 crystallite peaks in
the X-ray diffractogram after the CO2adsorption was
associated with the carbonate complexes species formation. IR spectra
indicate higher intensities over the CO2 exposure time of 4, 12 and 24 h, especially at absorption bands 1041 and 1627 cm-1 that corresponded to C-O and
asymmetry O-C-O stretches, respectively, for carbonate. The morphology of the
carbonate formation on nano coral-shaped α-Fe2O3 over the CO2 exposure time was analyzed using FESEM-EDX.
Although the carbonate formation was not distinct, the increment in the C
element also confirmed the capability of the α-Fe2O3 in adsorbing CO2 for a long adsorption time of 24 h.
Keywords: Adsorption
isotherm; carbonate formation; CO2 capture; hydrolysis method;
iron(III) oxide
Abstrak
α-Fe2O3 telah disintesis menggunakan kaedah
hidrolisis untuk mendapatkan morfologi berbentuk nano karang. Isoterma
penjerapan dan analisis permukaan terhadap penjerapan CO2 telah dikenal pasti. Keupayaan penjerapan bagi α-Fe2O3 berbentuk nano karang telah
diperoleh sebanyak 8.66 cm3/g (17.00 mg/g). Isoterma penjerapan CO2 pada 25 ℃ daripada data
uji kaji paling sesuai dengan model isoterma Freundlich menunjukkan proses penjerapan
adalah berlaku dengan mudah dan penjerapan lapisan berganda pada permukaan yang
heterogen. Penurunan puncak kekisi α-Fe2O3 dalam difraktogram sinar X selepas
penjerapan CO2 adalah
dikaitkan dengan pembentukan spesies karbonat kompleks. Spektrum IR menunjukkan
keamatan yang lebih tinggi terhadap masa pendedahan CO2 pada 4, 12 dan 24 jam, terutamanya pada
jalur-jalur serapan bagi 1041 dan 1627 cm-1 yang masing-masing sepadan dengan regangan C-O dan O-C-O tak simetri bagi
karbonat. Morfologi bagi pembentukan karbonat di atas α-Fe2O3 berbentuk nano karang terhadap masa
pendedahan CO2 dianalisis
menggunakan FESEM-EDX. Walaupun pembentukan karbonat adalah tidak jelas,
peningkatan unsur C juga telah mengesahkan keupayaan α-Fe2O3 dalam menjerap CO2 dalam masa penjerapan yang
panjang pada 24 jam.
Kata kunci: Ferum(III) oksida;
isoterma penjerapan; kaedah hidrolisis; pembentukan karbonat; penjerapan CO2
REFERENCES
Abu Tahari, M.N., Lahuri,
A.H., Ghazali, Z., Samidin, S., Sulhadi, S.S., Dzakaria, N. & Yarmo, M.A.
2020. Application of octadecylamine-based adsorbent on carbon dioxide capture. Materials Science Forum 1010: 367-372.
Abu Tahari, M.N., Hakim, A.,
Marliza, T.S., Mohd, N.H. & Yarmo, M.A. 2017. XRD and CO2 adsorption studies of
modified silica gel with octadecylamine. Materials
Science Forum 888: 529-533.
Ammendola, P., Raganati, F.
& Chirone, R. 2017. CO2 adsorption
on a fine activated carbon in a sound assisted
fluidized bed: Thermodynamics and kinetics. Chemical Engineering Journal 322: 302-313.
Andrade, R.G.D., Veloso, S.R.S. &
Castanheira, E.M.S. 2020. Shape anisotropic iron oxide-based magnetic
nanoparticles: Synthesis and biomedical applications. International Journal of Biomolecular Sciences 21: 1-25.
Baltrusaitis,
J., Schuttlefield, J., Zeitler, E. & Grassian, V.H. 2011. Carbon dioxide
adsorption on oxide nanoparticle surfaces. Chemical
Engineering Journal 170: 471-481.
Chen, X.R., Chen, Z.M. & Liu, X.J. 2016.
Study on the preparation of nanometer α-Fe2O3 by sonochemical hydrolysis method. MATEC Web of Conference 67: 06074.
Djomgoue, P., Siewe, M., Djoufac, E.,
Kenfack, P. & Njopwouo, D. 2012. Surface modification of Cameroonian
magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel
in aqueous solution. Applied Surface Science 258: 7470-7479.
Hakim, A., Marliza, T.S., Abu Tahari, M.N.,
Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016a.
Studies on CO2 adsorption and desorption properties from various
types of iron oxides (FeO, Fe2O3, and Fe3O4). Industrial & Engineering Chemistry Research 55: 7888-7897.
Hakim, A., Marliza, T.S., Abu Tahari, M.N.,
Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016b. Development of α-Fe2O3 as adsorbent and its effect on CO2 capture. Materials Science Forum 840: 421-426.
Hakim, A., Yarmo, M.A., Marliza, T.S., Abu
Tahari, M.N., Samad, W.Z., Yusop, M.R., Hisham, M.W.M. & Dzakaria, N.
2016c. The influence of calcination temperature on iron oxide (α-Fe2O3)
towards CO2 adsorption prepared by simple mixing method. Malaysian
Journal of Analytical Sciences 20(6): 1286-1298.
Hakim, A., Abu Tahari,
M.N., Marliza, T.S., Wan Isahak, W.N.R., Yusop, M.R., Hisham, M.W.M. &
Yarmo, M.A. 2015a. Study of CO2 adsorption and
desorption on activated carbon supported iron oxide by temperature programmed
desorption. Jurnal Teknologi (Sciences & Engineering) 77(33): 75-84.
Hakim, A., Wan Isahak,
W.N.R., Abu Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2015b.
Temperature programmed desorption of carbon dioxide for activated carbon
supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research 1087: 45-49.
Isokoski, K., Poteet, C.A. & Linnartz, H. 2013. Highly
resolved infrared spectra of pure CO2 ice (15-75 K). Astronomy
and Astrophysics 555: A85.
Kazansky,
V., Borovkov, V., Serykh, A.I. & Bulow, M. 1999. First observation of the
broad-range DRIFT spectra of carbon dioxide adsorbed on NaX zeolite. Physical
Chemistry Chemical Physics 1: 3701-3702.
Khdary, N.H., Ghanem, M.A., Abdesalam, M.E.
& Al-Garadah, M.M. 2018. Sequestration of CO2 using Cu
nanoparticles supported on spherical and rod-shape mesoporous silica. Journal
of Saudi Chemical Society 22(3): 343-351.
Kment, S., Riboni, F., Pausova, S., Wang, L.,
Wang, L.Y., Han, H.K., Hubicka, Z., Krysa, J., Schmuki, P. & Zboril, R.
2017. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined
heterostructures. Chemical Society Reviews 46: 3716-3769.
Lahuri,
A.H. & Yarmo, M.A. 2022. Study of CO2 adsorption time for
carbonate species and linear CO2 formations onto bimetallic CaO/Fe2O3 by infrared spectroscopy. Sains
Malaysiana 51(2): 507-517.
Lahuri, A.H., Mohd Yusuf, A., Adnan, R.,
Abdul Rahim, A., Waheed Tajudeen, N.F. & Nordin, N. 2022a. Kinetics and
thermodynamic modeling for CO2 capture using NiO supported activated
carbon by temperature swing adsorption. Biointerface
Research in Applied Chemistry 12(3): 4200-4219.
Lahuri, A.H., Yarmo, M.A., Abu Tahari, M.N.
& Dzakaria, N. 2022b. Adsorption isotherm analysis for CO2 capture using barium oxide impregnated iron(III) oxide by ultrasonic-assisted
synthesis. Key Engineering Materials 908: 379-384.
Lahuri, A.H., Yarmo, M.A.
& Abu Tahari, M.N. 2022c. Ultrasonic assisted synthesis of bimetal
composite strontium oxide/iron(III) oxide for the adsorption isotherm analysis
of CO2 capture. Lecture
Notes in Mechanical Engineering 175-195.
Lahuri, A.H., Adnan, R., Mansor, M.H., Waheed
Tajudeen, N.F. & Nordin, N. 2020a. Adsorption kinetics for carbon dioxide
capture using bismuth(III) oxide impregnated on activated carbon. Malaysian Journal of Chemistry 22(1):
33-46.
Lahuri, A.H., Michale Ling, N.K., Abdul
Rahim, A. & Nordin, N. 2020b. Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica 67: 570-580.
Lahuri, A.H., Yarmo, M.A., Abu Tahari, M.N.,
Marliza, T.S., Tengku Saharuddin, T.S., Mark Lee, W.F. & Dzakaria, N.
2020c. Comparative adsorption isotherm for beryllium
oxide/iron (III) oxide toward CO2 adsorption and desorption studies. Materials Science Forum 1010: 361-366.
Lahuri, A.H., Yarmo, M.A.,
Marliza, T.S., Abu Tahari, M.N., Samad, W.Z., Dzakaria, N. & Yusop, M.R.
2017. Carbon dioxide adsorption and desorption study
using bimetallic calcium oxide impregnated on iron(III) oxide. Materials Science Forum 888: 479-484.
Lassoued, A., Dkhil, B., Gadri, A. &
Ammar, S. 2017. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through
the chemical precipitation method. Results
in Physics 7: 3007-3015.
Lisjak, D. & Merteli, A. 2018.
Anisotropic magnetic nanoparticles: A review of their properties, syntheses and
potential applications. Progress in Materials Science 95: 286-328.
Mendoza, E.Y.M., Santos, A.S.,
Lopez, E.V., Drozd, V., Durygin, A., Chen, J.H. & Saxena, S.K. 2019. Iron
oxides as efficient sorbents for CO2 capture. Journal
of Materials Research and Technology 8(3): 2944-2956.
Mohanraj, K. & Sivakumar, G.
2017. Synthesis of γ-Fe2O3 , Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical
method. Sains Malaysiana 46(10): 1935-1942.
Mutch,
G.A., Anderson, J.A., Walker, R., Cerrato, G., Morandi, S., Operti, L.
&Vega-Maza, D. 2016. In-situ infrared spectroscopy as a non-invasive
technique to study carbon sequestration at high pressure and high temperature. International
Journal of Greenhouse Gas Control 51: 126-135.
Nambo, A. 2019. Nanowire based
adsorbents/catalysts for CO2 capture and utilization. Theses and
Dissertations. University of Louisville.ThinkIR: the University of Louisville’s
Institutional Repository (Unpublished).
Qin, W.Q., Yang, C.R., Yi, R. & Gao, G.H. 2011. Hydrothermal
synthesis and characterization of single-crystalline α-Fe2O3 nanocubes.
Journal of Nanomaterials 2011: 159259.
Rashidi, N.A. & Yusup, S. 2017. Potential of palm
kernel shell as activated carbon precursors through
single stage activation technique for carbon dioxide adsorption. Journal of
Cleaner Production 168: 474-486.
Sattler, K.D. 2011. Handbook of
Nanophysics: Nanoparticles and Quantum Dots. Boca Raton: CRC Press.
Shaba, E.Y., Jacob, J.O., Tijani, J.O. &
Suleiman, M.A.T. 2021. A critical review of synthesis parameters affecting the
properties of zinc oxide nanoparticle and its application in wastewater
treatment. Applied Water Science 11(48): 1-41.
Tadic, M., Panjan, M., Tadic,
B.V., Lazovic, J., Damnjanovic, V., Kopani, M. & Kopanja, L. 2019. Magnetic properties of hematite
(α−Fe2O3) nanoparticles synthesized by sol-gel
synthesis method: The influence of particle size and particle size
distribution. Journal of Electrical Engineering 70: 71-76.
Wu, Z., Yang, S. & Wu, W. 2016. Shape
control of inorganic nanoparticles from solution. Nanoscale 8:
1237-1259.
Zhong, W.H., Li, B., Maguire, R.G., Dang,
V.T., Shatkin, J.A., Gross, G.M. & Richey, M.C. 2012. Nanoscience
and Nanomaterials: Synthesis, Manufacturing and Industry Impacts. Pennsylvania: DEStech Publication.
*Corresponding
author; email: azizulhakim@upm.edu.my
|