Sains Malaysiana 52(1)(2023): 139-151

http://doi.org/10.17576/jsm-2023-5201-11

 

Hydrolysis of Blended Cotton/Polyester Fabric from Hospital Waste using Subcritical Water

(Hidrolisis Kapas Campuran/Kain Poliester Buangan dari Hospital menggunakan Air Subkritikal)

 

NORDIN SABLI1,2,*, SHAMSAINON ABU TOAT1, HIROYUKI YOSHIDA1 & SHAMSUL IZHAR1

 

1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Institute of Advance Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 28 September 2021/Accepted: 19 August 2022

 

Abstract

Currently in Malaysia, most wastes are disposed into poorly managed systems with little or no pollution protection measures. Large amounts of wastes such as textiles are generated through hospitals and health care centers. However, the improper management of these abundantly generated wastes may pose an environmental pollution problems and fire hazard. Cotton textile is a potential biomass for bioethanol production. Subcritical water (Sub-CW) hydrolysis was investigated as an alternative technology for the recycling of cotton textile waste for current health care waste management. The aim of this study was to investigate the possibility of complete conversion of cotton textile waste to ethanol via Sub-CW hydrolysis and fermentation.  Sub-CW was carried out to facilitate the hydrolysis of cellulose component in cotton textile (cotton 75%+polyester 25%). The study was divided into two parts; (i) To evaluate the subcritical water parameters such as temperature and time to achieve maximum yield of sugars. (ii) Fermentation of the hydrolysate obtained from Sub-CW hydrolysis to ethanol. Under Sub-CW conditions of temperature (140 °C - 350 °C), reaction time (1-10 min) and water to cotton ratio (3:1) showed that cotton textile treated at 280 °C for 4 min, was optimal for maximizing yield of sugar, which was 0.213 g/g-dry sample. The quantitative analysis by HPLC showed that the soluble carbohydrates in the water phase were mainly composed of glucose. The obtained glucose concentration, 171 mg/L was then fermented at 36 °C for 24 hours by Saccharomyces cerevisae (yeast) to ethanol.  Highest yield of ethanol was 0.415 g/g glucose, which was 81.2 % of theoretical yield. Hydrolysis with Sub-CW showed the potential to decompose the cotton textile into simple sugar while keeping sugar degradation to minimal phase and the possibility of complete conversion of cotton textile waste to ethanol via Sub-CW and fermentation.

 

Keywords: Cellulose; cotton textile; ethanol; fermentation; glucose; subcritical water

 

Abstrak

Pada masa ini di Malaysia, kebanyakan sisa dibuang ke dalam sistem yang tidak diurus dengan baik dengan sedikit atau tiada langkah perlindungan pencemaran. Sejumlah besar bahan buangan seperti tekstil dijana melalui hospital dan pusat penjagaan kesihatan. Walau bagaimanapun, pengurusan yang tidak cekap bagi sisa yang dihasilkan dengan banyak ini boleh menimbulkan masalah pencemaran alam sekitar dan bahaya kebakaran. Tekstil kapas adalah biojisim yang berpotensi untuk pengeluaran bioetanol. Hidrolisis air subkritikal (Sub-CW) telah dikaji sebagai teknologi alternatif untuk mengitar semula sisa tekstil kapas untuk pengurusan sisa penjagaan kesihatan semasa. Matlamat kajian ini adalah untuk mengkaji kemungkinan penukaran lengkap sisa tekstil kapas kepada etanol melalui hidrolisis dan penapaian Sub-CW. Sub-CW telah dijalankan untuk memudahkan hidrolisis komponen selulosa dalam tekstil kapas (kapas 75%+poliester 25%). Kajian ini dibahagikan kepada dua bahagian; (i) Untuk menilai parameter air subkritikal seperti suhu dan masa untuk mencapai hasil maksimum gula. (ii) Penapaian hidrolisat yang diperoleh daripada hidrolisis Sub-CW kepada etanol. Di bawah keadaan Sub-CW suhu (140 °C - 350 °C), masa tindak balas (1-10 min) dan nisbah air kepada kapas (3:1) mendedahkan bahawa tekstil kapas dirawat pada 280 °C selama 4 minit, adalah optimum untuk memaksimumkan hasil gula, iaitu 0.213 g/g-sampel kering. Analisis kuantitatif oleh HPLC menunjukkan bahawa karbohidrat larut dalam fasa air terutamanya terdiri daripada glukosa. Kepekatan glukosa yang diperoleh, 171 mg/L kemudian ditapai pada 36 °C selama 24 jam oleh Saccharomyces cerevisae (yis) kepada etanol. Hasil etanol tertinggi ialah 0.415 g/g glukosa, iaitu 81.2% daripada hasil teori. Hidrolisis dengan Sub-CW menunjukkan potensi untuk menguraikan tekstil kapas kepada gula ringkas sambil mengekalkan degradasi gula kepada fasa minimum dan kemungkinan penukaran lengkap sisa tekstil kapas kepada etanol melalui Sub-CW dan penapaian.

 

Kata kunci: Air subkritikal; etanol; fermentasi; glukosa; selulosa; tekstil kapas

 

REFERENCES

Abaide, E.R., Mortari, S.R., Ugalde, G., Valério, A., Amorim, S.M., Di Luccio, M., de F.P.M. Moreira, R., Kuhn, R.C., Priamo, W.L., Tres, M.V., Zabot, G.L. & Mazutti, M.A. 2019. Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production 209: 386-397.

Abdelmoez, W., Nage, S.M., Bastawess, A., Ihab, A. & Yoshida, H. 2014. Subcritical water technology for wheat straw hydrolysis to produce value added products. Journal of Cleaner Production 70: 68-77.

Afroz, R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of air pollution and health impacts in Malaysia. Environmental Research 92(2): 71-77.

Aliakbarian, B., Fathi, A., Perego, P. & Dehghani, F. 2012. Extraction of antioxidants from winery wastes using subcritical water. The Journal of Supercritical Fluids 65: 18-24.

Baig, M.N., Santos, R.C.D., King, J., Pioch, D. & Bowra, S. 2013. Evaluation and modelling of continuous flow sub-critical water hydrolysis of biomass derived components; lipids and carbohydrates. Chemical Engineering Research and Design 91(12): 2663-2670.

Canabarro, N.I., Alessio, C., Foletto, E.L., Kuhn, R.C., Priamo, W.L. & Mazutti, M.A. 2017. Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor. Renewable Energy 102: 9-14.

Cocero, M.J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C.M. & Pazo-Cepeda, M.V. 2017. Understanding biomass fractionation in subcritical & supercritical water. The Journal of Supercritical Fluids 133(Part 2): 550-565.

Das, A.M., Hazarika, M.P., Goswami, M., Yadav, A. & Khound, P. 2016. Extraction of cellulose from agricultural waste using montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum. Carbohydrate Polymers 141: 20-27.

Dastjerdi, B., Strezov, V., Kumar, R. & Behnia, M. 2019. An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia. Renewable and Sustainable Energy Reviews 115: 109398.

Daylan, B. & Ciliz, N. 2016. Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renewable Energy 89: 578-587.

Daza Serna, L.V., Orrego Alzate, C.E. & Cardona Alzate, C.A. 2016. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology 199: 113-120.

Du, S-K., Su, X., Yang, W., Wang, Y., Kuang, M., Ma, L., Fang, D. & Zhou, D. 2016. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydrate Polymers 140: 279-286.

Evcan, E. & Tari, C. 2015. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy 88: 775-782.

Gholamzad, E., Karimi, K. & Masoomi, M. 2014. Effective conversion of waste polyester-cotton textile to ethanol recovery of polyester by alkaline pretreatment. Chemical Engineering Journal 253: 40-45.

Gonçalves, D.L., Matsushika, A., de Sales, B.B., Goshima, T., Bon, E.P.S. & Stambuk, B.U. 2014. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology 63: 13-20.

Govindaswamy, S. & Vane, L.M. 2010. Multi-stage continuous culture fermentation of glucose - Xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Bioresource Technology 101(4): 1277-1284.

Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M. & Ardjmand, M. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 27: 77-93.

Isci, A. & Demirer, G.N. 2007. Biogas production potential from cotton wastes. Renewable Energy 32(5): 750-757.

Isik, N. & Bakir, U. 2013. Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Industrial Crops & Products 51: 408-414.

Jeihanipour, A. & Taherzadeh, M.J. 2009. Ethanol production from cotton-based waste textiles. Bioresource Technology 100(2): 1007-1010.

Kathirvale, S., Noor, M., Yunus, M., Sopian, K. & Halim, A. 2003. Energy potential from municipal solid waste in Malaysia. Renewable Energy 29: 559-567.

Khaleghian, H., Karimi, K. & Behzad, T. 2015. Ethanol production from rice straw by sodium carbonate pretreatment and Mucor hiemalis fermentation. Industrial Crops and Products 76: 1079-1085.

Kirmizakis, P., Tsamoutsoglou, C., Kayan, B. & Kalderis, D. 2014. Subcritical water treatment of land fill leachate: Application of response surface methodology. Journal of Environmental Management 146: 9-15.

Kumar, S., Gupta, R., Lee, Y.Y. & Gupta, R.B. 2010. Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology 101(4): 1337-1347.

Lachos-Perez, D., Tompsett, G.A., Guerra, P., Timko, M.T., Rostagno, M.A., Martínez, J. & Forster-Carneiro, T. 2017. Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology 243: 1069-1077.

Latawiec, A.E., Swindell, A.L. & Reid, B.J. 2008. Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water. Environmental Pollution 156(2): 467-473.

Levendis, Y.A., Atal, A., Carlson, J.B. & Esperanza, M. 2001. PAH and soot emissions from burning components of medical waste: Examination/surgical gloves and cotton pads. Chemosphere 42(5-7): 775-783.

Liguori, R. & Faraco, V. 2016. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresource Technology 215: 13-20.

Lin, R., Cheng, J., Ding, L., Song, W., Qi, F., Zhou, J. & Cen, K. 2015. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. Bioresource Technology 186: 8-14.

Li, H., Kim, N.J., Jiang, M., Kang, J.W. & Chang, H.N. 2009. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid - acetone for bioethanol production. Bioresource Technology 100(13): 3245-3251.

Lü, X. & Saka, S. 2010. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures. Biomass and Bioenergy 34(8): 1089-1097.

Mcintosh, S., Vancov, T., Palmer, J. & Morris, S. 2014. Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresource Technology 173: 42-51.

Mihiretu, G.T., Brodin, M., Chimphango, A.F., Øyaas, K., Hoff, B.H. & Görgens, J.F. 2017. Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials - A biorefinery approach. Bioresource Technology 241: 669-680.

Mohan, M., Banerjee, T. & Goud, V.V. 2015. Hydrolysis of bamboo biomass by subcritical water treatment. Bioresource Technology 191: 244-252.

Mohseni-Bandpei, A., Majlesi, M., Rafiee, M., Nojavan, S., Nowrouz, P. & Zolfagharpour, H.  2019. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste. Chemosphere 227: 277-288.

Naffati, A., Vladi, J., Pavli, B., Radosavljevi, R., Gavari, A. & Vidovi, S. 2017. Recycling of filter tea industry by-products: Application of subcritical water extraction for recovery of bioactive compounds from A. uva-ursi herbal dust. Journal of Supercritical Fluids 121: 1-9.

Nielsen, S.S. 2010. Phenol-sulfuric acid method for total carbohydrates. In Food Analysis Laboratory Manual. Food Science Text Series. Boston: Springer. pp. 47-53.

Nikolić, S., Lazić, V., Veljović, Đ. & Mojović, L. 2017. Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. Carbohydrate Polymers 164: 136-144.

Nørup, N., Pihl, K., Damgaard, A. & Scheutz, C. 2019. Development and testing of a sorting and quality assessment method for textile waste. Waste Management 79: 8-21.

Öztürk Ilker, I., Irmak, S., Hesenov, A. & Erbatur, O. 2010. Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass and Bioenergy 34(11): 1578-1585.

Pek, C. & Jamal, O.A. 2011. Choice experiment analysis for solid waste disposal option: A case study in Malaysia. Journal of Environmental Management 92(11): 2993-3001.

Pourali, O. 2009. Production of valuable materials from rice bran biomass using subcritical water. PhD Thesis.  Osaka Prefecture University. Osaka, Japan. pp. 5-124.

Prado, J.M., Follegatti-Romero, L.A., Forster-Carneiro, T., Rostagno, M.A., Maugeri Filho, F. &  Meireles, M.A.A. 2014. Hydrolysis of sugarcane bagasse in subcritical water. Journal of Supercritical Fluids 86: 15-22.

Rastogi, M. & Shrivastava, S. 2017. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews 80: 330-340.

Ravber, M., Knez, Ž. & Škerget, M. 2015. Simultaneous extraction of oil-and water-soluble phase from sunflower seeds with subcritical water. Food Chemistry 166(1): 316-323.

Sahoo, D., Ummalyma, S.B., Okram, A.K., Sukumaran, R.K., George, E. & Pandey, A.  2017. Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. Bioresource Technology 242: 133-138.

Salak, F. & Yoshida, H. 2010. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions. Carbohydrate Research 345(1): 124-131.

Sharifah Aishah Syed Abd Kadir, Chun-Yang Yin, Muhamad Rosli Sulaiman, Xi Chen & Mohanad El-Harbawi. 2013. Incineration of municipal solid waste in Malaysia: Salient issues, policies and waste-to-energy initiatives. Renewable and Sustainable Energy Reviews 24: 181-186.

Shekdar, A.V. 2009. Sustainable solid waste management: An integrated approach for Asian countries. Waste Management 29(4): 1438-1448.

Shen, F., Xiao, W., Lin, L., Yang, G., Zhang, Y. & Deng, S. 2013. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresource Technology 130: 248-255.

Shi, H., Liu, H.C., Li, P. & Xu, X.G. 2017. An integrated decision making approach for assessing healthcare waste treatment technologies from a multiple stakeholder. Waste Management 59: 508-517.

Sindhu, R., Binod, P. & Pandey, A. 2016. Biological pretreatment of lignocellulosic biomass - An overview. Bioresource Technology 199: 76-82.

Singh, R.P., Singh, P., Araujo, A.S.F., Hakimi Ibrahim, M. & Sulaiman, O. 2011. Management of urban solid waste: Vermicomposting a sustainable option. Resources, Conservation and Recycling 55(7): 719-729.

Tanaka, M., Takamizu, A., Hoshino, M., Sasaki, M. & Goto, M. 2012. Extraction of dietary fiber from Citrus junos peel with subcritical water. Food and Bioproducts Processing 90(2): 180-186.

Tan, S., Hashim, H., Lee, C., Taib, M.R. & Yan, J. 2014. Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion. Energy Procedia 61: 704-708.

Thakur, V. & Ramesh, A. 2015. Selection of waste disposal firms using grey theory based multi-criteria decision making technique. Procedia - Social and Behavioral Sciences 189: 81-90.

Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T. & Goud, V.V. 2015. Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy 81: 9-18.

Vani, S., Binod, P., Kuttiraja, M., Sindhu, R., Sandhya, S.V., Preeti, V.E., Sukumaran, R.K. & Pandey, A. 2012. Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresource Technology 112: 300-307.

Wanassi, B., Azzouz, B. & Hassen, M.B. 2016. Value-added waste cotton yarn: Optimization of recycling process and spinning of reclaimed fibers. Industrial Crops and Products 87: 27-32.

Wang, P., Chang, J., Yin, Q., Wang, E., Zhu, Q., Song, A. & Lu, F. 2015. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw. Bioresource Technology 194: 165-171.

Wataniyakul, P., Pavasant, P., Goto, M. & Shotipruk, A. 2012. Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresource Technology 124: 18-22.

Wu, M., Ya, Z., Ming, X., Xu, F. & Cang, R. 2016. Integration of mild acid hydrolysis in γ -valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Bioresource Technology 200: 23-28.

Xu, S., Fang, D., Tian, X., Xu, Y., Zhu, X., Wang, Y., Lei, B., Hu, P. & Ma, L. 2021. Subcritical water extraction of bioactive compounds from waste cotton (Gossypium hirsutum L.) flowers. Industrial Crops and Products 164: 113369.

Yang, F., Li, Y., Zhang, Q., Sun, X., Fan, H., Xu, N. & Li, G. 2015. Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO42−/MxOy solid superacid catalyst. Carbohydrate Polymers 131: 9-14.

Yedro, F.M., Cantero, D.A., Pascual, M., García-Serna, J. & Cocero, M.J. 2015. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery. Bioresource Technology  191: 124-132.

Yousef, S., Tatariants, M., Tichonovas, M., Sarwar, Z., Jonuškienė, I. & Kliucininkas, L. 2019a. A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling 145: 359-369.

Yousef, S., Eimontas, J., Striūgas, N., Tatariants, M., Abdelnaby, M.A., Tuckute, S. & Kliucininkas, L. 2019b. A sustainable bioenergy conversion strategy for textile waste with self-catalysts using mini-pyrolysis plant. Energy Conversion and Management 196: 688-704.

Zhao, Y., Tan, H., Xu, Y. & Zou, L. 2016. Multi-level dissolution and hydrolysis of lignocellulosic waste with a semi-flow hydrothermal system. Bioresource Technology 214: 496-503.

Zhao, Y., Lu, W.J., Wang, H.T. & Yang, J.L. 2009. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresource Technology 100(23): 5884-5889.

Zhou, H., Long, Y., Meng, A., Li, Q. & Zhang, Y. 2015. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 145: 151-157.

 

*Corresponding author; email: nordin_sab@upm.edu.my

 

 

 

 

previous