Sains Malaysiana 52(1)(2023): 175-185

http://doi.org/10.17576/jsm-2023-5201-14

 

Evaluation of Xylose-Utilising Yeasts for Xylitol Production from Second-Generation Ethanol Vinasse and Effect of Agitation Intensity in Flask-Scale Xylitol Production

(Penilaian Yis mengguna Xilosa untuk Pengeluaran Xilitol daripada Vinasse Etanol Generasi Kedua dan Kesan Keamatan Pergolakan dalam Pengeluaran Xilitol Skala Flask)

 

SREYDEN HOR1,2, MALLIKA BOONMEE KONGKEITKAJORN2,3,* & ALISSARA REUNGSANG2,4

 

1Graduate School, Khon Kaen University, Khon Kaen, Thailand

2Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand

3Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, Thailand

4Academy of Science, Royal Society of Thailand, Bangkok, Thailand

 

Received: 5 June 2022/Accepted: 5 October 2022

 

Abstract

This study aimed to select a yeast strain that effectively utilises xylose to produce xylitol from the vinasse of ethanol broth obtained from the fermentation of sugarcane bagasse hydrolysate. Eleven strains of xylose-fermenting yeasts were evaluated for their abilities to utilise xylose and produce xylitol. Two strains that showed outstanding performance in the semi-defined xylose medium were selected for further testing with a vinasse medium. Candida guilliermondii TISTR 5068 showed a superior xylitol production of 7.03 ± 0.08 g/L with the xylitol yield of 0.70 g/gxylose when cultured in bagasse-based ethanol vinasse. The strain was further tested for its xylitol production performance when cultured at four different agitation intensities. Excessive agitation resulted in a rapid xylitol production rate but caused xylitol consumption once the xylose was depleted. Moderate agitation resulted in the highest xylitol yield of 0.79 g/gxylose. The results of this study have provided important information for the development of the xylitol production process using waste streams from cellulosic ethanol production.

 

Keywords: Aeration; biorefineries; fermentation; vinasse; xylitol; yeasts

 

Abstrak

Kajian ini bertujuan untuk memilih strain yis yang menggunakan xilosa secara berkesan untuk menghasilkan xilitol daripada vinasse rebusan etanol yang diperoleh daripada penapaian hidrolisat hampas tebu. Sebelas strain yis difermentasi xilosa dinilai untuk kebolehan mereka untuk menggunakan xilosa dan menghasilkan xilitol. Dua strain yang menunjukkan prestasi cemerlang dalam medium xilosa separa takrif telah dipilih untuk ujian selanjutnya dengan medium vinasse. Candida guilliermondii TISTR 5068 menunjukkan pengeluaran unggul xilitol sebanyak 7.03 ± 0.08 g/L dengan hasil xilitol sebanyak 0.70 g/gxylose apabila dikultur dalam vinasse etanol berasaskan hampas. Strain diuji lagi untuk prestasi pengeluaran xilitol apabila dikultur pada empat keamatan pengadukan yang berbeza. Penggoncangan yang berlebihan mengakibatkan kadar pengeluaran xilitol yang cepat tetapi menyebabkan penggunaan xilitol sebaik sahaja xilosa habis. Penggoncangan sederhana menghasilkan hasil xilitol tertinggi iaitu 0.79 g/gxylose. Hasil kajian ini telah memberikan maklumat penting untuk pembangunan proses penghasilan xilitol menggunakan aliran sisa daripada penghasilan etanol selulosa.

 

Kata kunci: Fermentasi; kilang penapisan bio; pengudaraan; vinasse; xilitol; yis

 

REFERENCES

Ahuja, V., Macho, M., Ewe, D., Singh, M., Saha, S. & Saurav, K. 2020. Biological and pharmacological potential of xylitol: A molecular insight of unique metabolism. Foods 9(11): 1-24. https://doi.org/10.3390/foods9111592

Arruda, P.V. & Felipe, M.G.A. 2009. Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Current Microbiology 58(3): 274-278. https://doi.org/10.1007/s00284-008-9321-7

Bedő, S., Antal, B., Rozbach, M., Fehér, A. & Fehér, C. 2019. Optimised fractionation of wheat bran for arabinose biopurification and xylitol fermentation by Ogataea zsoltii within a biorefinery process. Industrial Crops and Products 139(November): 111504. https://doi.org/10.1016/j.indcrop.2019.111504

Bedő, S., Fehér, A., Khunnonkwao, P., Jantama, K. & Fehér, C. 2021. Optimized bioconversion of xylose derived from pre-treated crop residues into xylitol by using Candida boidinii. Agronomy 11(1): 79. https://doi.org/10.3390/agronomy11010079

Dalli, S.S., Patel, M. & Rakshit, S.K. 2017. Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass and Bioenergy 105: 402-410. https://doi.org/10.1016/j.biombioe.2017.08.001

Dasgupta, D., Bandhu, S., Adhikari, D.K. & Ghosh, D. 2017. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research 197: 9-21. https://doi.org/10.1016/j.micres.2016.12.012

da Cunha-Pereira, F., Hickert, L.R., Rech, R., Dillon, A.P. & Záchia Ayub, M.A. 2017. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13. Brazilian Journal of Chemical Engineering 34(4): 927-936. https://doi.org/10.1590/0104-6632.20170344s20160005

da Silva, R.O., do Nascimento Serpa, M. & Brod, F.C.A. 2020. Influence of agitation and aeration on xylitol production by the yeast Starmerella meliponinorum. Quimica Nova 43(6): 705-710. https://doi.org/10.21577/0100-4042.20170541

de Souza Queiroz, S., Jofre, F.M., dos Santos, H.A., Hernández-Pérez, A.F. & de Almeida Felipe, M.d.G. 2021. Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01493-y

Ding, X. & Xia, L. 2006. Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Applied Biochemistry and Biotechnology 133(3): 263-270. https://doi.org/10.1385/ABAB:133:3:263

Du, C., Li, Y., Zong, H., Yuan, T., Yuan, W. & Jiang, Y. 2020. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. Bioresource Technology 310(August): 123427. https://doi.org/10.1016/j.biortech.2020.123427

Edelstein, S., Smith, K., Worthington, A., Gillis, N., Bruen, D., Kang, S.H., Ho, W.L., Gilpin, K., Ackerman, J. & Guiducci, G. 2008. Comparisons of six new artificial sweetener gradation ratios with sucrose in conventional-method cupcakes resulting in best percentage substitution ratios. Journal of Culinary Science and Technology 5(4): 61-74. https://doi.org/10.1300/J385v05n04_05

Gı́rio, F.M., Amaro, C., Azinheira, H., Pelica, F. & Amaral-Collaço, M.T. 2000. Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresource Technology 71(3): 245-251. https://doi.org/10.1016/S0960-8524(99)00078-4

Jeffries, T.W. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnology Letters 3(5): 213-218. https://doi.org/10.1007/BF00154647

Kongkeitkajorn, M.B., Sae-Kuay, C. & Reungsang, A. 2020. Evaluation of Napier grass for bioethanol production through a fermentation process. Processes 8(5): 567. https://doi.org/10.3390/PR8050567

Kumar, V., Krishania, M., Sandhu, P.P., Ahluwalia, V., Gnansounou, E. & Sangwan, R.S. 2018. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresource Technology 251(September 2017): 416-419. https://doi.org/10.1016/j.biortech.2017.11.039

Lee, H., Atkin, A.L., Barbosa, M.F.S., Dorscheid, D.R. & Schneider, H. 1988. Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii. Enzyme and Microbial Technology 10(2): 81-84. https://doi.org/10.1016/0141-0229(88)90002-6

López-Linares, J.C., Romero, I., Cara, C., Castro, E. & Mussatto, S.I. 2018. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology 247(September 2017): 736-743. https://doi.org/10.1016/j.biortech.2017.09.139

Lu, J., Tsai, L.B., Gong, C.S. & Tsao, G.T. 1995. Effect of nitrogen sources on xylitol production from D-xylose by Candida sp. L-102. Biotechnology Letters 17(2): 167-170. https://doi.org/10.1007/BF00127982

Maguire, A. & Rugg-Gunn, A.J. 2003. Xylitol and caries prevention - Is it a magic bullet? British Dental Journal 194(8): 429-436. https://doi.org/10.1038/sj.bdj.4810022

Martínez-Corona, R., Penagos, C.C., Chávez-Parga, M.d.C., Alvarez-Navarrete, M. & González-Hernández, J.C. 2016. Analysis of the effect of agitation and aeration on xylitol production by fermentation in bioreactor with Kluyveromyces marxianus using hydrolized tamarind seed as substrate. International Journal of Current Microbiology and Applied Sciences 5(6): 479-499. https://doi.org/10.20546/ijcmas.2016.506.055

Martins, G.M., Bocchini-Martins, D.A., Bezzerra-Bussoli, C., Pagnocca, F.C., Boscolo, M., Monteiro, D.A., da Silva, R. & Gomes, E. 2018. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Brazilian Journal of Microbiology 49(1): 162-168. https://doi.org/10.1016/j.bjm.2016.11.014

Morais Junior, W.G., Pacheco, T.F., Trichez, D., Almeida, J.R.M. & Gonçalves, S.B. 2019. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast 36(5): 349-361. https://doi.org/10.1002/yea.3394

Mussatto, S.I., Silva, C.J.S.M. & Roberto, I.C. 2006. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Applied Microbiology and Biotechnology 72(4): 681-686. https://doi.org/10.1007/s00253-006-0372-z

Okolie, J.A., Mukherjee, A., Nanda, S., Dalai, A.K. & Kozinski, J.A. 2021. Next‐generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research 45(10): 14145-14169. https://doi.org/10.1002/er.6697

Pal, S., Choudhary, V., Kumar, A., Biswas, D., Mondal, A.K. & Sahoo, D.K. 2013. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresource Technology 147: 449-455. https://doi.org/10.1016/j.biortech.2013.08.065

Rafiqul, I.S.M. & Mimi Sakinah, A.M. 2013. Processes for the production of xylitol - A review. Food Reviews International 29(2): 127-156. https://doi.org/10.1080/87559129.2012.714434

Rao, L.V., Goli, J.K., Gentela, J. & Koti, S. 2016. Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology 213: 299-310. https://doi.org/10.1016/j.biortech.2016.04.092

Schirmer-Michel, Â.C., Flôres, S.H., Hertz, P.F., Matos, G.S. & Záchia Ayub, M.A. 2008. Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technology 99(8): 2898-2904. https://doi.org/10.1016/j.biortech.2007.06.042

Tani, T., Taguchi, H. & Akamatsu, T. 2017. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 123(5): 613-620. https://doi.org/10.1016/j.jbiosc.2016.12.012

Thancharoen, K., Deeseenthum, S. & Vichitphan, K. 2016. Potential of xylose-fermented yeast isolated from sugarcane bagasse waste for xylitol production using hydrolysate as carbon source. Songklanakarin Journal of Science and Technology 38(5): 473-483. https://doi.org/10.14456/sjst-psu.2016.63

Veras, H.C.T., Parachin, N.S. & Almeida, J.R.M. 2017. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories 16(1): 1-8. https://doi.org/10.1186/s12934-017-0766-x

Wannawilai, S., Lee, W.C., Chisti, Y. & Sirisansaneeyakul, S. 2017. Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. Journal of Biotechnology 241: 147-157. https://doi.org/10.1016/j.jbiotec.2016.11.022

Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R. & Sun, W. 2019. Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech 21(2): 341-347. https://doi.org/10.1007/s12355-018-0650-y

 

*Corresponding author; email: mallikab@kku.ac.th

 

 

 

previous