Sains Malaysiana 52(1)(2023):
175-185
http://doi.org/10.17576/jsm-2023-5201-14
Evaluation
of Xylose-Utilising Yeasts for Xylitol Production from Second-Generation
Ethanol Vinasse and Effect of Agitation Intensity in
Flask-Scale Xylitol Production
(Penilaian Yis
mengguna Xilosa untuk Pengeluaran Xilitol daripada Vinasse Etanol Generasi
Kedua dan Kesan Keamatan Pergolakan dalam Pengeluaran Xilitol Skala Flask)
SREYDEN HOR1,2,
MALLIKA BOONMEE KONGKEITKAJORN2,3,* &
ALISSARA REUNGSANG2,4
1Graduate
School, Khon Kaen University, Khon Kaen,
Thailand
2Department of
Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
3Research Center for Environmental and Hazardous Substance Management
(EHSM), Khon Kaen University, Khon Kaen,
Thailand
4Academy of
Science, Royal Society of Thailand, Bangkok, Thailand
Received: 5 June
2022/Accepted: 5 October 2022
Abstract
This study aimed to select a yeast strain that
effectively utilises xylose to produce xylitol from the vinasse of ethanol broth obtained from the fermentation of sugarcane bagasse
hydrolysate. Eleven strains of xylose-fermenting yeasts were evaluated for
their abilities to utilise xylose and produce xylitol. Two strains that showed
outstanding performance in the semi-defined xylose medium were selected for
further testing with a vinasse medium. Candida guilliermondii TISTR 5068 showed a superior xylitol
production of 7.03 ± 0.08 g/L with the xylitol yield of 0.70 g/gxylose when cultured in bagasse-based ethanol vinasse. The strain was further tested for its xylitol
production performance when cultured at four different agitation intensities.
Excessive agitation resulted in a rapid xylitol production rate but caused
xylitol consumption once the xylose was depleted. Moderate agitation resulted
in the highest xylitol yield of 0.79 g/gxylose.
The results of this study have provided important information for the
development of the xylitol production process using waste streams from cellulosic ethanol production.
Keywords: Aeration; biorefineries;
fermentation; vinasse; xylitol; yeasts
Abstrak
Kajian
ini bertujuan untuk memilih strain yis yang menggunakan xilosa secara berkesan
untuk menghasilkan xilitol daripada vinasse rebusan etanol yang diperoleh
daripada penapaian hidrolisat hampas tebu. Sebelas
strain yis difermentasi xilosa dinilai untuk kebolehan mereka untuk menggunakan
xilosa dan menghasilkan xilitol. Dua
strain yang menunjukkan prestasi cemerlang dalam medium xilosa separa takrif
telah dipilih untuk ujian selanjutnya dengan medium vinasse. Candida guilliermondii TISTR
5068 menunjukkan pengeluaran unggul xilitol sebanyak 7.03 ± 0.08 g/L dengan
hasil xilitol sebanyak 0.70 g/gxylose apabila dikultur dalam vinasse etanol berasaskan hampas. Strain
diuji lagi untuk prestasi pengeluaran xilitol apabila dikultur pada empat
keamatan pengadukan yang berbeza. Penggoncangan
yang berlebihan mengakibatkan kadar pengeluaran xilitol yang cepat tetapi
menyebabkan penggunaan xilitol sebaik sahaja xilosa habis. Penggoncangan
sederhana menghasilkan hasil xilitol tertinggi iaitu 0.79 g/gxylose. Hasil
kajian ini telah memberikan maklumat penting untuk pembangunan proses
penghasilan xilitol menggunakan aliran sisa daripada penghasilan etanol
selulosa.
Kata kunci: Fermentasi; kilang penapisan bio; pengudaraan; vinasse; xilitol; yis
REFERENCES
Ahuja, V., Macho, M., Ewe, D.,
Singh, M., Saha, S. & Saurav, K. 2020. Biological
and pharmacological potential of xylitol: A molecular insight of unique
metabolism. Foods 9(11): 1-24. https://doi.org/10.3390/foods9111592
Arruda, P.V. & Felipe,
M.G.A. 2009. Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Current Microbiology 58(3): 274-278. https://doi.org/10.1007/s00284-008-9321-7
Bedő, S., Antal, B., Rozbach, M., Fehér, A. & Fehér, C. 2019. Optimised fractionation of wheat bran for
arabinose biopurification and xylitol fermentation by Ogataea zsoltii within a biorefinery process. Industrial Crops and Products 139(November): 111504. https://doi.org/10.1016/j.indcrop.2019.111504
Bedő, S., Fehér, A., Khunnonkwao, P., Jantama, K.
& Fehér, C. 2021. Optimized bioconversion of
xylose derived from pre-treated crop residues into xylitol by using Candida boidinii. Agronomy 11(1): 79.
https://doi.org/10.3390/agronomy11010079
Dalli, S.S., Patel, M. & Rakshit, S.K. 2017. Development and evaluation of poplar
hemicellulose prehydrolysate upstream processes for
the enhanced fermentative production of xylitol. Biomass and Bioenergy 105: 402-410. https://doi.org/10.1016/j.biombioe.2017.08.001
Dasgupta, D., Bandhu, S., Adhikari, D.K. & Ghosh, D. 2017. Challenges
and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological
Research 197: 9-21. https://doi.org/10.1016/j.micres.2016.12.012
da Cunha-Pereira, F., Hickert, L.R., Rech, R., Dillon,
A.P. & Záchia Ayub,
M.A. 2017. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13. Brazilian Journal of Chemical Engineering 34(4): 927-936.
https://doi.org/10.1590/0104-6632.20170344s20160005
da Silva, R.O., do Nascimento Serpa, M. & Brod, F.C.A.
2020. Influence of agitation and aeration on xylitol production by the yeast Starmerella meliponinorum. Quimica Nova 43(6): 705-710.
https://doi.org/10.21577/0100-4042.20170541
de Souza Queiroz, S., Jofre, F.M., dos Santos, H.A., Hernández-Pérez, A.F. &
de Almeida Felipe, M.d.G. 2021. Xylitol and ethanol co-production
from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Conversion and Biorefinery.
https://doi.org/10.1007/s13399-021-01493-y
Ding, X. & Xia, L. 2006.
Effect of aeration rate on production of xylitol from corncob hemicellulose
hydrolysate. Applied Biochemistry and Biotechnology 133(3): 263-270.
https://doi.org/10.1385/ABAB:133:3:263
Du, C., Li, Y., Zong, H., Yuan, T., Yuan, W. & Jiang, Y. 2020.
Production of bioethanol and xylitol from non-detoxified corn cob via a
two-stage fermentation strategy. Bioresource Technology 310(August):
123427. https://doi.org/10.1016/j.biortech.2020.123427
Edelstein, S., Smith, K.,
Worthington, A., Gillis, N., Bruen, D., Kang, S.H.,
Ho, W.L., Gilpin, K., Ackerman, J. & Guiducci, G. 2008. Comparisons of six new artificial
sweetener gradation ratios with sucrose in conventional-method cupcakes
resulting in best percentage substitution ratios. Journal of Culinary
Science and Technology 5(4): 61-74. https://doi.org/10.1300/J385v05n04_05
Gı́rio, F.M., Amaro, C., Azinheira,
H., Pelica, F. & Amaral-Collaço,
M.T. 2000. Polyols production during single and mixed substrate fermentations
in Debaryomyces hansenii. Bioresource Technology 71(3): 245-251.
https://doi.org/10.1016/S0960-8524(99)00078-4
Jeffries, T.W. 1981. Conversion
of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnology
Letters 3(5): 213-218. https://doi.org/10.1007/BF00154647
Kongkeitkajorn, M.B., Sae-Kuay,
C. & Reungsang, A. 2020. Evaluation of Napier
grass for bioethanol production through a fermentation process. Processes 8(5): 567. https://doi.org/10.3390/PR8050567
Kumar, V., Krishania,
M., Sandhu, P.P., Ahluwalia, V., Gnansounou, E. & Sangwan, R.S. 2018. Efficient detoxification of corn
cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida
tropicalis MTCC 6192. Bioresource Technology 251(September 2017):
416-419. https://doi.org/10.1016/j.biortech.2017.11.039
Lee, H., Atkin, A.L., Barbosa,
M.F.S., Dorscheid, D.R. & Schneider, H. 1988.
Effect of biotin limitation on the conversion of xylose to ethanol and xylitol
by Pachysolen tannophilus and Candida guilliermondii. Enzyme and
Microbial Technology 10(2): 81-84.
https://doi.org/10.1016/0141-0229(88)90002-6
López-Linares, J.C., Romero,
I., Cara, C., Castro, E. & Mussatto, S.I. 2018.
Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource
Technology 247(September 2017): 736-743.
https://doi.org/10.1016/j.biortech.2017.09.139
Lu, J., Tsai, L.B., Gong, C.S.
& Tsao, G.T. 1995. Effect of nitrogen sources on xylitol production from
D-xylose by Candida sp. L-102. Biotechnology Letters 17(2):
167-170. https://doi.org/10.1007/BF00127982
Maguire, A. & Rugg-Gunn,
A.J. 2003. Xylitol and caries prevention - Is it a magic bullet? British
Dental Journal 194(8): 429-436. https://doi.org/10.1038/sj.bdj.4810022
Martínez-Corona, R., Penagos, C.C.,
Chávez-Parga, M.d.C., Alvarez-Navarrete, M. &
González-Hernández, J.C. 2016. Analysis of the effect of agitation and aeration
on xylitol production by fermentation in bioreactor with Kluyveromyces marxianus using hydrolized tamarind seed as substrate. International Journal of Current Microbiology
and Applied Sciences 5(6): 479-499.
https://doi.org/10.20546/ijcmas.2016.506.055
Martins, G.M., Bocchini-Martins, D.A., Bezzerra-Bussoli,
C., Pagnocca, F.C., Boscolo,
M., Monteiro, D.A., da Silva, R. & Gomes, E. 2018. The isolation of
pentose-assimilating yeasts and their xylose fermentation potential. Brazilian
Journal of Microbiology 49(1): 162-168.
https://doi.org/10.1016/j.bjm.2016.11.014
Morais Junior, W.G., Pacheco, T.F., Trichez, D., Almeida, J.R.M. & Gonçalves, S.B. 2019.
Xylitol production on sugarcane biomass hydrolysate by newly identified Candida
tropicalis JA2 strain. Yeast 36(5): 349-361.
https://doi.org/10.1002/yea.3394
Mussatto, S.I., Silva, C.J.S.M. & Roberto, I.C.
2006. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Applied
Microbiology and Biotechnology 72(4): 681-686.
https://doi.org/10.1007/s00253-006-0372-z
Okolie, J.A., Mukherjee, A., Nanda, S., Dalai,
A.K. & Kozinski, J.A. 2021. Next‐generation
biofuels and platform biochemicals from lignocellulosic biomass. International
Journal of Energy Research 45(10): 14145-14169.
https://doi.org/10.1002/er.6697
Pal, S., Choudhary, V., Kumar,
A., Biswas, D., Mondal, A.K. & Sahoo, D.K. 2013. Studies on xylitol
production by metabolic pathway engineered Debaryomyces hansenii. Bioresource Technology 147:
449-455. https://doi.org/10.1016/j.biortech.2013.08.065
Rafiqul, I.S.M. & Mimi Sakinah, A.M. 2013. Processes for the production of xylitol
- A review. Food Reviews International 29(2): 127-156.
https://doi.org/10.1080/87559129.2012.714434
Rao, L.V., Goli,
J.K., Gentela, J. & Koti,
S. 2016. Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource
Technology 213: 299-310. https://doi.org/10.1016/j.biortech.2016.04.092
Schirmer-Michel, Â.C., Flôres, S.H., Hertz, P.F., Matos, G.S. & Záchia Ayub, M.A. 2008.
Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technology 99(8): 2898-2904. https://doi.org/10.1016/j.biortech.2007.06.042
Tani, T., Taguchi, H. & Akamatsu, T. 2017.
Analysis of metabolisms and transports of xylitol using xylose- and
xylitol-assimilating Saccharomyces cerevisiae. Journal of Bioscience
and Bioengineering 123(5): 613-620.
https://doi.org/10.1016/j.jbiosc.2016.12.012
Thancharoen, K., Deeseenthum,
S. & Vichitphan, K. 2016. Potential of
xylose-fermented yeast isolated from sugarcane bagasse waste for xylitol
production using hydrolysate as carbon source. Songklanakarin Journal of Science and Technology 38(5): 473-483.
https://doi.org/10.14456/sjst-psu.2016.63
Veras, H.C.T., Parachin,
N.S. & Almeida, J.R.M. 2017. Comparative assessment of fermentative
capacity of different xylose-consuming yeasts. Microbial Cell Factories 16(1): 1-8. https://doi.org/10.1186/s12934-017-0766-x
Wannawilai, S., Lee, W.C., Chisti,
Y. & Sirisansaneeyakul, S. 2017. Furfural and
glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. Journal of Biotechnology 241: 147-157. https://doi.org/10.1016/j.jbiotec.2016.11.022
Xu, L., Liu, L., Li, S., Zheng,
W., Cui, Y., Liu, R. & Sun, W. 2019. Xylitol production by Candida
tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech 21(2):
341-347. https://doi.org/10.1007/s12355-018-0650-y
*Corresponding author; email: mallikab@kku.ac.th
|