Sains Malaysiana 52(1)(2023):
187-197
http://doi.org/10.17576/jsm-2023-5201-15
Immunophenotyping of Gastritis, Gastric
Ulcer and Gastric Cancer using a Cluster of Differentiation (CD) Antibody
Microarray
(Imunofenotip Gastritis, Ulser Gaster dan Kanser Gaster
menggunakan Mikroarai Antibodi Kelompok Pembezaan (CD))
ALFIZAH HANAFIAH1,*,
ASIF SUKRI2, NIK RITZA KOSAI3, MOHAMAD AZNAN SHUHAILI3,
MUSTAFA MOHAMMED TAHER3 & RAJA AFFENDI RAJA ALI4
1Department of Medical Microbiology & Immunology, Faculty of
Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Federal
Territory, Malaysia
2Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA
(UiTM), Puncak Alam, 42300
Selangor Darul Ehsan, Malaysia
3Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras,
Kuala Lumpur, Federal Territory, Malaysia
4Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras,
Kuala Lumpur, Federal Territory, Malaysia
Received: 23 September
2021/Accepted: 11 October 2022
Abstract
One
of the factors that contribute to the development of gastric cancer is the host
immune response. Extensive immunophenotype of gastric cancer can be identified
by using antibody microarray technique that profiles more than 100 cluster of
differentiation (CD) antigens in parallel. In this study, we used DotScanTM antibody microarray to profile CD
antigen expression in patients with distinct digestive diseases for surface
antigen disease-signatures. Patients’ blood samples with gastric disorders and
healthy controls were taken and processed for leukocytes isolation using Histopaque density gradient centrifugation. Leukocytes were
captured onto DotScanTM slides and cell
binding densities were analyzed using DotReaderTM.
Different groups of gastric diseases were found to be characterized by
differentially expressed distinct CD antigens. Compared to normal healthy
controls, 17, two and four highly expressed CD antigens were identified in
gastritis, gastric ulcer and gastric cancer patients, respectively. The 17 CD
antigens that show differential expression in gastritis were CD15, CD16, CD20,
CD23, CD24, CD25, CD28, CD34, CD37, CD77, CD102, CD103, CD122, CD128, CD10,
CD183, and CD184. High expression of
CD64 and CD69 were found in gastric ulcer, whereas CD52, CD126, CD135, and CD121a
were highly expressed in gastric cancer. CD antigens involve in T-cell
functions had reduced expression in gastric cancer, while proinflammatory
cytokines shows increased expression. These results demonstrate specific
immunophenotype of CD antigens in patients with various gastric diseases and
identification of differential expressed surface antigens may have clinical
significance for diagnostic and therapeutic purposes.
Keywords:
Cluster of differentiation antigen; gastric cancer; gastric ulcer; gastritis;
immunophenotype
ABSTRAK
Salah satu faktor yang menyumbang kepada perkembangan kanser perut adalah tindak balas imun perumah. Pengenalpastian imunofenotip kanser perut yang meluas dapat dilakukan dengan menggunakan teknik mikroarai antibodi yang memaparkan lebih daripada 100 kelompok antigen pembezaan (CD) secara serentak. Dalam kajian ini, mikroarai antibodi DotScanTM digunakan untuk memprofil pengekspresan antigen CD pada pesakit dengan penyakit pencernaan untuk mengenal pasti penanda antigen permukaan pada pelbagai jenis penyakit pencernaan. Sampel darah pesakit dengan penyakit gaster dan individu kawalan sihat diambil dan diproses untuk pengasingan leukosit menggunakan kaedah emparan kecerunan Histopaque. Leukosit ditangkap ke atas slaid DotScanTM dan kepadatan pengikatan antigen dan antibodi dianalisis menggunakan DotReaderTM. Keputusan kajian ini menunjukkan kumpulan penyakit gaster yang berlainan dapat dicirikan oleh ekspresi kelompok antigen CD yang berbeza. Berbanding dengan kawalan normal yang sihat, 17, dua dan empat antigen CD yang diekspres secara berbeza dikenal pasti masing-masing pada pesakit gastritis, ulser gaster dan kanser perut. 17 antigen CD
yang menunjukkan perbezaan ekspresi dalam gastritis adalah CD15, CD16, CD20, CD23, CD24, CD25, CD28, CD34,
CD37, CD77, CD102, CD103, CD122, CD128, CD10, CD183 dan CD184. Ekspresi CD64 dan CD69 yang tinggi didapati pada penyakit ulser gaster, manakala ekspresi yang tinggi CD52,
CD126, CD135 dan CD121a dilihat pada penyakit kanser perut. Antigen CD yang terlibat dalam fungsi sel-T mengalami penurunan ekspresi pada kanser perut, manakala sitokin proinflamasi menunjukkan peningkatan ekspresi. Hasil kajian ini menunjukkan imunofenotip antigen CD adalah khusus pada pesakit dengan pelbagai penyakit gaster dan pengenalpastian antigen permukaan yang diekspres secara berbeza mungkin mempunyai kepentingan klinikal bagi tujuan diagnostik dan rawatan penyakit.
Kata kunci: Gastritis; imunofenotip; kanser perut; kelompok antigen pembezaan; ulser gaster
REFERENCES
Albitar, M., Do, K.A., Johnson, M.M., Giles, F.J., Jilani, I., O'Brien, S.,
Cortes, J., Thomas, D., Rassenti, L.Z., Kipps, T.J., Kantarjian, H.M. & Keating, M. 2004. Free circulating
soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its
implication in therapy with anti-CD52 antibodies. Cancer 101(5):
999-1008.
Anderson, R. & Rapoport, B.L. 2018. Immune
dysregulation in cancer patients undergoing immune checkpoint inhibitor
treatment and potential predictive strategies for future clinical practice. Front Oncol. 8: 80.
Belov, L., Huang, P., Barber, N., Mulligan, S.P. & Christopherson, R.I.
2003. Identification of repertoires of surface antigens on leukemias using an
antibody microarray. Proteomics 3:
2147-2154.
Belov, L., de la Vega, O., dos Remedios, C.G., Mulligan, S.P. & Christopherson,
R.I. 2001. Immunophenotyping of leukemias using a cluster of differentiation
antibody microarray. Cancer Res. 61:
4483-4489.
Bockerstett, K.A. & DiPaolo, R.J. 2017. Regulation
of gastric carcinogenesis by inflammatory cytokines cell. Mol. Gastroenterol. Hepatol. 4(1): 47-53.
Calder, P.C. 2007. Immunological parameters:
What do they mean? J. Nutr. 137(3): 773S-780S.
Cancer Net Editorial Board 01/2018. https://www.cancer.net/cancer-types/stomach-cancer/statistics
Daar, A.S., Fuggle, S.V., Fabre, J.W., Ting, A.
& Morris, P.J. 1984. The detailed distribution of MHC class II antigens in
normal human organs. Transplantation 38: 293-298.
Dams-Kozlowska, H., Gryska, K., Kwiatkowska-Borowczyk,
E., Izycki, D., Rose-John, S. & Mackiewicz, A. 2012. A designer hyper interleukin 11 (H11)
is a biologically active cytokine. BMC Biotechnol. 12: 8.
Drexler, H.G. 1996. Expression of FLT3
receptor and response to FLT3 ligand by leukemic cells. Leukemia 10:
588-599.
Eketorp Sylvan, S., Lundin, J., Ipek,
M., Palma, M., Karlsson, C. & Hansson, L. 2014. Alemtuzumab (anti-CD52
monoclonal antibody) as single-agent therapy in patients with
relapsed/refractory chronic lymphocytic leukaemia (CLL)-a single region
experience on consecutive patients. Ann. Hematol.
93(10): 1725-1733.
Ellmark, P., Woolfson, A., Belov,
L. & Christopherson, R.I. 2008. The applicability of a cluster of
differentiation monoclonal antibody microarray to the diagnosis of human
disease. In Genomics Protocols: Methods
in Molecular Biology, edited by Starkey, M. & Elaswarapu,
R. Vol. 439. New Jersey: Humana Press.
Fernvik, E., Halldén, G., Hed,
J. & Lundahl, J. 1995. Intracellular and surface
distribution of CD9 in human eosinophils. APMIS 103: 699-706.
Fields, J.K., Günther, S. & Sundberg, E.J.
2019. Structural basis of IL-1 family cytokine signaling. Front Immunol. 10: 1412.
Ha, C.T., Waterhouse, R., Wessells,
J., Wu, J.A. & Dveksler, G.S. 2005. Binding of
pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of
IL-10, IL-6, PGE2, and TGF-beta1. J. Leukoc. Biol. 77: 948-957.
Halova, I. & Draber, P. 2016. Tetraspanins and transmembrane adaptor proteins as plasma
membrane organizers-mast cell case. Front Cell Dev. Biol. 4: 43.
Heinrich, P.C., Behrmann,
I., Haan, S., Hermanns,
H.M., Muller-Newen, G. & Schaper, F. 2003.
Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374(1):
1-20.
Higginbottom, A., Wilkinson, I., McCullough,
B., Lanza, F., Azorsa, D.O., Partridge, L.J. &
Monk, P.N. 2000. Antibody cross-linking of human CD9 and the high-affinity
immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology 99(4): 546-552.
Huang, W., Febbraio,
M. & Silverstein, R.L. 2011. CD9 tetraspanin interacts
with CD36 on the surface of macrophages: A possible regulatory influence on
uptake of oxidized low-density lipoprotein. PLoS ONE 6: e29092.
Ishii, N., Chiba, M., Iizuka, M., Watanabe,
H., Ishioka, T. & Masamune,
O. 1992. Expression of MHC class II antigens (HLA-DR, -DP, and -DQ) on human
gastric epithelium. Gastroenterol. Jpn. 27(1):
23-28.
Jones, S.A., Scheller,
J. & Rose-John, S. 2011. Therapeutic strategies for the clinical blockade
of IL-6/gp130 signaling. J. Clin. Invest. 121(9): 3375-3383.
Kishimoto, T., Kikutani, H., von dem Borne, AEG Kr., Goyert, S.M., Mason, D.Y., Miyasaka,
M., Moretta, L., Okumura, K., Shaw, S., Springer,
T.A., Sugamura, K. & Zola, H. 1998. Leukocyte Typing VI: White Cell
Differentiation Antigens. Proceedings of the Sixth International Workshop and
Conference, Kobe, Japan, 10-14 November 1996. Garland Publishing, Inc.
Lee, K., Hwang, H. & Nam, K.T. 2014.
Immune response and the tumor microenvironment: How they communicate to
regulate gastric cancer. Gut Liver 8(2): 131-139.
Levy, S. & Shoham,
T. 2005. The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 5: 136-148.
Li, S., Huang, X., Chen, Z., Zhong, H., Peng,
Q., Deng, Y., Qin, X. & Zhao, J. 2013. Neutrophil CD64 expression as a
biomarker in the early diagnosis of bacterial infection: A meta-analysis. Int.
J. Infect. Dis. 17: e12-e23.
Lyman, S.D. 1995. Biology of flt3 ligand and
receptor. Int. J. Hematol. 62: 63-73.
Miyake, M., Koyama, M., Seno, M. & Ikeyama, S. 1991. Identification of the motility related
protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell
motility. J. Exp. Med. 174: 1347-1354.
Oleinika, K., Nibbs, R.J., Graham, G.J. &
Fraser, A.R. 2013. Suppression, subversion and escape: The role of regulatory T
cells in cancer progression. Clin. Exp.
Immunol. 171(1): 36-45.
Oritani, K., Wu, X., Medina, K., Hudson, J., Miyake, K., Gimble, J.M.,
Burstein, S.A. & Kincade, P.W. 1996. Antibody
ligation of CD9 modifies production of myeloid cells in long-term cultures. Blood 87(6): 2252-2261.
Powner, D., Kopp, P.M., Monkley, S.J., Critchley,
D.R. & Berditchevski, F. 2011. Tetraspanin CD9 in cell migration. Biochem.
Soc. Trans. 39: 563-567.
Rahman, W.,
Tu, T., Budzinska, M., Huang, P., Belov,
L., Chrisp, J.S., Christopherson, R.I., Warner, F.J., Bowden, D.S.,
Thompson, A.J., Bowen, D.G., Strasser, S.I., Koorey,
D., Sharland, A.F., Yang, J.Y.H., Mccaughan,
G.W. & Shackel, N.A. 2015. Analysis of
post-liver transplant hepatitis C virus recurrence using serial cluster of
differentiation antibody microarrays. Transplantation 99(9): e120-e126.
Rahman, W., Huang, P., Belov,
L., Chrisp, J.S., Christopherson, R.I., Stapelberg, P.M., Warner, F.J., George, J., Bowen, D.G.,
Strasser, S.I., Koorey, D., Sharland,
A.F., McCaughan, G.W. & Shackel, N.A. 2012.
Analysis of human liver disease using a cluster of differentiation (CD)
antibody microarray. Liver Int. 32(10): 1527-1534.
Regis, G., Pensa,
S., Boselli, D., Novelli, F. & Poli, V. 2008. Ups and downs: The STAT1:STAT3 seesaw of
interferon and gp130 receptor signalling. Semin. Cell Dev. Biol. 19(4): 351-359.
Rodig, S.J., Abramson, J.S., Pinkus, G.S., Treon,
S.P., Dorfman, D.M., Dong, H.Y., Shipp, M.A. & Kutok,
J.L. 2006. Heterogeneous CD52 expression among hematologic neoplasms:
Implications for the use of alemtuzumab (CAMPATH-1H). Clin. Cancer Res. 12(23):
7174-7179.
Sanchez-Carbayo, M.
2011. Antibody microarrays as tools for biomarker discovery. Methods Mol. Biol. 785: 159-182.
Sánchez-Mateos, P., Cebrián, M., Acevedo, A., López-Botet,
M., De Landázuri, M.O. & Sánchez-Madrid, F. 1989.
Expression of a gp33/27,000 Mw activation inducer molecule (AIM) on human
lymphoid tissues. Induction of cell proliferation on thymocytes and B
lymphocytes by anti-AIM antibodies. Immunology 68: 72-79.
Sancho, D., Gómez, M., Viedma,
F., Esplugues, E., Gordón-Alonso,
M., García-López, M.A., de la Fuente, H., Martínez-A, C., Lauzurica,
P. & Sánchez-Madrid, F. 2003. CD69 downregulates autoimmune reactivity
through active transforming growth factor-β production in collagen-induced
arthritis. J. Clin. Invest. 112: 872-882.
Seipold, L. & Saftig, P. 2016. The emerging
role of tetraspanins in the proteolytic processing of
the amyloid precursor protein. Front Mol. Neurosci. 9: 149.
Sims, N.A. 2009. gp130 signaling in bone cell
biology: Multiple roles revealed by analysis of genetically altered mice. Mol.
Cell Endocrinol. 310(1-2): 30-39.
Sukri, A., Hanafiah, A., Kosai,
N.R., Mohammed Taher, M. & Mohamed Rose, I. 2016. Surface antigen profiling
of Helicobacter pylori-infected and
-Uninfected gastric cancer cells using antibody microarray. Helicobacter 1(5): 417-427.
Tarlock, K., Alonzo, T.A., Loken, M.R., Gerbing, R.B., Ries, R.E., Aplenc, R., Sung, L., Raimondi, S.C., Hirsch, B.A., Kahwash, S.B., McKenney, A., Kolb, E.A., Gamis, A.S. & Meshinchi, S.
2017. Disease characteristics and prognostic implications of cell-surface FLT3
receptor (CD135) expression in pediatric acute myeloid leukemia: A report from
the Children’s Oncology Group. Clin. Cancer Res. 23(14): 3649-3656.
Thoresby, E., Berle, E. & Nousiainen,
H. 1982. HLA-D region molecules restrict proliferative T cell responses to
antigen. Immunological Rev. 66: 39-56.
Unanue, E.R. 1981. The regulatory role of macrophages in antigenic
stimulation. Part two: Symbiotic relationship between lymphocytes and
macrophages. Adv. Immunol. 31: 1-136.
Valentin, H., Gelin,
C., Coulombel, L., Zoccola,
D., Morizet, J. & Bernard, A. 1992. The
distribution of the CDW52 molecule on blood cells and characterization of
its involvement in T cell activation. Transplantation 54: 97-104.
van Spriel, A.B.
2011. Tetraspanins in the humoral immune response. Biochem. Soc. Trans. 39: 512-517.
Wee, A., Teh, M.
& Kang, J.Y. 1992. Association of Helicobacter pylori with HLA-DR
antigen expression in gastritis. J. Clin. Pathol. 45: 30-33.
Xia, M.Q., Hale, G., Lifely,
M.R., Ferguson, M.A., Campbell, D., Packman, L. & Waldmann,
H. 1993. Structure of the CAMPATH-1 antigen, a
glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally
good target for complement lysis. Biochem.
J. 293(3): 633-640.
Yu, H., Pardoll, D.
& Jove, R. 2009. STATs in cancer inflammation and immunity: A leading role
for STAT3. Nat. Rev. Cancer 9(11): 798-809.
Zhou, J., Belov, L.,
Huang, P.Y., Shin, J.S., Solomon, M.J., Chapuis,
P.H., Bokey, L., Chan, C., Clarke, C., Clarke, S.J.
& Christopherson, R.I. 2010. Surface antigen profiling of colorectal cancer
using antibody microarrays with fluorescence multiplexing. J. Immunol. Methods 355: 40-51.
*Corresponding
author; email: alfizah@ppukm.ukm.edu.my
|