Sains Malaysiana 52(1)(2023): 199-210

http://doi.org/10.17576/jsm-2023-5201-16

 

In Vitro Antimicrobial, Antiglycolytic, and Antibiofilm Activities of Synthetic 1,4-Naphthoquinone Derivatives against Cariogenic Bacteria

(Aktiviti Antimikrob, Antiglikolitik dan Antibiofilem In Vitro bagi Terbitan 1,4-Naftokuinon Sintetik terhadap Bakteria Kariogenik)

 

PICHAYAPORN RATTI1, JUTHARAT MANUSCHAI1, JIRAPORN KARA2,3, LUELAK LOMLIM2,3 & SUPAWADEE NAORUNGROJ1,*

 

1Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand

2Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand

3Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand

 

Received: 11 June 2022/Accepted: 29 September 2022

 

Abstract

This study investigated the potential anticaries properties of synthetic 1,4-naphthoquinone derivatives. Synthetic 1,4-naphthoquinone derivatives (2-4) were designed and synthesized by employing lawsone methyl ether (LME, 1), a plant-derived 1,4-naphthoquinone, as a lead compound. The synthetic compounds were characterized by infrared spectroscopy, 1H-nuclear magnetic spectroscopy, 13C- nuclear magnetic spectroscopy, and high-resolution mass spectrometry. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and growth curves were determined to assess their antibacterial effects against Streptococcus mutans, Lacticaseibacillus casei, and Actinomyces naeslundii. The pH drop assay was also performed on these three bacterial species. The effect on S. mutans biofilm formation was evaluated by crystal violet assay. From the microdilution assay, 2-(prop-2-ynyloxy) naphthalene-1,4-dione (compound 2) showed potent antimicrobial activity against S. mutansand A. naeslundii(MIC of 1.56 and 3.125 µg/mL, respectively) in the same range as chlorhexidine (MIC of 1.95 and 1.95 µg/mL, respectively). The 1,4-naphthoquinone derivatives showed low antibacterial activity against L. casei. LME (compound 1) and 2-(prop-2-ynyloxy) naphthalene-1,4-dione (compound 2) inhibited pH reduction from S. mutans. The compounds at sub-MIC concentrations showed a potent inhibitory effect against S. mutans biofilm formation in a dose- and time-dependent manner. These results suggested that the synthetic 1,4-naphthoquinone derivatives are promising compounds that could be developed as a novel alternative or adjunctive anticaries therapies.

 

Keywords: Acid production; antibacterial activity; dental biofilm; dental caries; 1,4-naphthoquinone

 

Abstrak

Penyelidikan ini mengkaji potensi sifat antikaries bagi terbitan 1,4-naftokuinon sintetik. Terbitan 1,4-naftokuinon sintetik (2-4) telah direka dan disintesis dengan menggunakan lawsone metil eter (LME, 1), 1,4-naftokuinon yang berasal daripada tumbuhan, sebagai sebatian plumbum. Sebatian sintetik telah dicirikan oleh spektroskopi inframerah, spektroskopi magnet nuklear 1H, spektroskopi magnet nuklear 13C dan spektrometri jisim resolusi tinggi. Kepekatan perencatan minimum (MIC), kepekatan bakteria minimum (MBC) dan lengkung pertumbuhan ditentukan untuk menilai kesan antibakteria mereka terhadap Streptococcus mutans, Lacticaseibacillus casei dan Actinomyces naeslundii. Ujian penurunan pH juga dilakukan ke atas ketiga-tiga spesies bakteria ini. Kesan ke atas pembentukan biofilem S. mutans dinilai dengan ujian kristal violet. Daripada ujian pencairan mikro, 2-(prop-2-yniloksi)naftalena-1,4-dion (sebatian 2) menunjukkan aktiviti antimikrob yang kuat terhadap S. mutans dan A. naeslundii (masing-masing MIC 1.56 dan 3.125 µg/mL) dalam julat yang sama seperti klorheksidin (masing-masing MIC 1.95 dan 1.95 µg/mL). Terbitan 1,4-naftokuinon menunjukkan aktiviti antibakteria yang rendah terhadap L. casei. LME (sebatian 1) dan 2-(prop-2-yniloksi)naftalena-1,4-dione (sebatian 2) menghalang pengurangan pH daripada S. mutans. Sebatian pada kepekatan sub-MIC menunjukkan kesan perencatan yang kuat terhadap pembentukan biofilem S. mutans dalam cara yang bergantung kepada dos dan masa. Keputusan ini mencadangkan bahawa terbitan 1,4-naftokuinon sintetik adalah sebatian yang menyakinkan dan boleh dibangunkan sebagai alternatif baru atau terapi antikaries tambahan.

 

Kata kunci: Aktiviti antibakteria; biofilem gigi; karies gigi; penghasilan asid; 1,4-naftokuinon

 

REFERENCES

Ahn, S.J., Wen, Z.T. & Burne, R.A. 2007. Effects of oxygen on virulence traits of Streptococcus mutans. Journal of Bacteriology 189(23): 8519-8527.

Alaki, S.M., Burt, B.A. & Garetz, S.L. 2009. The association between antibiotics usage in early childhood and early childhood caries. Pediatric Dentistry 31(1): 31-37.

Anaissi-Afonso, L., Oramas-Royo, S., Ayra-Plasencia, J., Martín-Rodríguez, P., García-Luis, J., Lorenzo-Castrillejo, I., Fernández-Pérez, L., Estévez-Braun, A. & Machín, F. 2018. Lawsone, Juglone, and β-Lapachone derivatives with enhanced mitochondrial-based toxicity. ACS Chemical Biology 13(8): 1950-1957.

Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., di Bonaventura, G., Hébraud, M.,  Jaglic, Z., Kačániova, M., Knøchel, S., Lourenço, A., Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O. & Stenberg, C. 2017. Critical review on biofilm methods. Critical Reviews in Microbiology 43(3): 313-351.

Caufield, P.W., Schön, C.N., Saraithong, P., Li, Y. & Argimón, S. 2015. Oral lactobacilli and dental caries: A model for niche adaptation in humans. Journal of Dental Research 94(9 Suppl): 110S-8S.

Dieterle, M.E., Fina Martin, J., Durán, R., Nemirovsky, S.I., Sanchez Rivas, C., Bowman, C., Russell, D., Hatfull, G.F., Cambillau, C. & Piuri, M. 2016. Characterization of prophages containing "evolved" Dit/Tal modules in the genome of Lactobacillus casei BL23. Applied Microbiology and Biotechnology 100(21): 9201-9215.

Han, S., Abiko, Y., Washio, J., Luo, Y., Zhang, L. & Takahashi, N. 2021. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans streptococci. Caries Research 55(3): 205-214.

Howell, A., Jordan, H.V., Georg, L.K. & Pine, L. 1965. Odontomyces viscosus, gen. nov., spec. nov., a filamentous microorganism isolated from periodontal plaque in hamsters. Sabouraudia 4(2): 65-68.

Jeon, J.G., Rosalen, P.L., Falsetta, M.L. & Koo, H. 2011. Natural products in caries research: Current (limited) knowledge, challenges and future perspective. Caries Research 45(3): 243-263.

Kawashima, J., Nakajo, K., Washio, J., Mayanagi, G., Shimauchi, H. & Takahashi, N. 2013. Fluoride-sensitivity of growth and acid production of oral Actinomyces: Comparison with oral Streptococcus. Microbiology and Immunology 57(12): 797-804.

Levison, M.E. 2004. Pharmacodynamics of antimicrobial drugs. Infectious Disease Clinics of North America 18(3): 451-465.

Li, J., Helmerhorst, E.J., Leone, C.W., Troxler, R.F., Yaskell, T., Haffajee, A.D., Socransky, S.S., & Oppenheim, F.G. 2004. Identification of early microbial colonizers in human dental biofilm. Journal of Applied Microbiology 97(6): 1311-1318.

Lopez, L.I.L., Flores, S.D.N., Belmares, S.Y.S. & Galindo, A.S. 2014. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives - A structured review.  Vitae 21(3): 248-258.

Nittayananta, W., Limsuwan, S., Srichana, T., Sae-Wong, C. & Amnuaikit, T. 2018. Oral spray containing plant-derived compounds is effective against common oral pathogens. Archives of Oral Biology 90: 80-85.

Panichayupakaranant, P. & Reanmongkol, W. 2008. Evaluation of chemical stability and skin irritation of lawsone methyl ether in oral base. Pharmaceutical Biology 40(6): 429-432.

Panichayupakaranant, P., Septama, A.W. & Sinviratpong, A. 2019. Synergistic activity of lawsone methyl ether in combination with some antibiotics and artocarpin against methicillin-resistant Staphylococcus aureus, Candida albicans, and Trychophyton rubrum. Chinese Herbal Medicines 11(3): 321-325.

Qiu, W., Zhou, Y., Li, Z., Huang, T., Xiao, Y., Cheng, L., Peng, X., Zhang, L. & Ren, B. 2020. Application of antibiotics/antimicrobial agents on dental caries. Biomed Research International 2020: 5658212.

Sakunphueak, A. & Panichayupakaranant, P. 2012. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina. Natural Product Research 26(12): 1119-1124.

Simón-Soro, A. & Mira, A. 2015. Solving the etiology of dental caries. Trends in Microbiology 23(2): 76-82.

Taff, H.T., Nett, J.E. & Andes, D.R. 2012. Comparative analysis of candida biofilm quantitation assays. Medical Mycology 50(2): 214-218.

Takahashi, N. & Nyvad, B. 2016. Ecological hypothesis of dentin and root Caries. Caries Research 50(4): 422-431.

Tanner, A., Kressirer, C.A., Rothmiller, S., Johansson, I. & Chalmers, N.I. 2018. The caries microbiome: Implications for reversing dysbiosis. Advances in Dental Research 29(1): 78-85.

ten Cate, J.M. & Zaura, E. 2012. The numerous microbial species in oral biofilms: How could antibacterial therapy be effective? Advances in Dental Research 24(2): 108-111.

van der Hoeven, J.S. & van den Kieboom, C.W.A. 1990. Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii. Oral Microbiology and Immunology 5(4): 223-225.

Vohra, F., Akram, Z., Safii, S.H., Vaithilingam, R.D., Ghanem, A., Sergis, K. & Javed, F. 2016. Role of antimicrobial photodynamic therapy in the treatment of aggressive periodontitis: A systematic review. Photodiagnosis and Photodynamic Therapy 13: 139-147.

Wilkins, J.C., Homer, K.A. & Beighton, D. 2002. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Applied and Environmental Microbiology 68(5): 2382-2390.

Yang, X., Summerhurst, D.K., Koval, S.F., Ficker, C., Smith, M.L. & Bernards, M.A. 2001. Isolation of an antimicrobial compound from Impatiens balsamina L. using bioassay-guided fractionation. Phytotherapy Research 15(8): 676-680.

Zotta, T., Parente, E. & Ricciardi, A. 2017. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry. Journal of Applied Microbiology 122(4): 857-869.

 

*Corresponding author; email: supawadee.n@psu.ac.th

 

 

 

previous