Sains Malaysiana 52(1)(2023): 233-244

http://doi.org/10.17576/jsm-2023-5201-19

 

Ethanol Extract of Centella asiatica Improved Methamphetamine-Induced Neurotoxicity on Mouse Model via Stimulating Superoxide Dismutase II and microRNA-34A Expression

(Ekstrak Etanol Centella asiatica Menambahbaik Keneurotoksikan Teraruh Metamfetamin pada Model Tikus melalui Superoksida Dismutase II dan Ekspresi Mikro)

 

NURSYAMILA SHAMSUDDIN1, MAZATULIKHMA MAT ZAIN2, MOHD ILHAM ADENAN3 &

MOHD SHIHABUDDIN AHMAD NOORDEN1,*

 

1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia

2Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40000 Shah Alam, Selangor Darul Ehsan, Malaysia

3Atta-ur-Rahman Institute for Natural Product Discovery (AuRins), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia

 

Received: 20 May 2022/Accepted: 23 August 2022

 

Abstract

Neurotoxicity induced by a psychostimulant drug, methamphetamine (METH) is associated with devastating and persistent neurotoxicity effects on the central nervous system (CNS). Centella asiatica (CA) is known as an antioxidant and neuroprotective agent. However, there is a limited study on natural-derived therapeutic to attenuate neurotoxicity induced by METH. We aimed to investigate the effects of METH and ethanol extract CA (CAE) on motor performance of animal model and the expression of manganese superoxide dismutase II (SOD2) and microRNA-34a (miR-34a) in the brain tissue. Male Sprague-Dawley rats were administered with METH (50 mg/kg per body weight) twice per day for 4 days, CAE (300 mg/kg & 500 mg/kg per body weight for 21 days and combination of METH and CAE for 21 day(s). Weight of rat was measured and motor performance was evaluated using vertical pole and narrow beam tests. Expression of SOD2 and miR-34a were measured using Quantitative Real-time Polymerase Chain Reaction (RT-qPCR). Group III (300 mg/kg CAE); p<0.001, Group IV (500 mg/kg CAE); p<0.001, Group V (METH+300 mg/kg CAE); p<0.01 and Group VI (METH+500 mg/kg CAE); p<0.01 significantly improved latency in the vertical pole test compared to METH group. Meanwhile, Group III (300 mg/kg CAE); p<0.001 and Group IV (500 mg/kg CAE); p<0.001 significantly decreased latency in the narrow beam test compared to METH. Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the SOD2 expression by 3.78±1.03 and 4.05±0.19 folds compared to METH, respectively. Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the miR-34a expression by (7.02±3.73) and (6.75±1.94) folds compared to METH, respectively. CAE could be suggested as a promising natural-derived therapeutic for METH-induced neurotoxicity to ameliorating motor performance and triggering SOD2 and miR-34a expression.

 

Keywords: Centella asiatica; methamphetamine; microRNA-34a; superoxide dismutase II

 

Abstrak

Keneurotoksikan yang disebabkan oleh dadah psikostimulan, metafetamin (METH) dikaitkan dengan kesan keneurotoksikan yang teruk dan berterusan pada sistem saraf pusat. Centella asiatiaca (CA) terkenal sebagai agen antioksidan dan neurolindung. Walau bagaimanapun, terdapat kajian yang terhad mengenai bahan teraputik semula jadi untuk melemahkan keneurotoksikan yang disebabkan oleh METH. Kami berhasrat mengkaji kesan METH dan ekstrak etanol CA (CAE) pada prestasi motor model haiwan dan ekspresi manganese superoksida dismutase II (SOD2) dan mikroRNA-34a (miR-34a) pada tisu otak. Tikus Sprague-Dawley jantan diberikan METH (50 mg/kg setiap berat badan) dua kali sehari selama 4 hari, CAE (300 mg/kg dan 500 mg/kg setiap berat badan) selama 21 hari dan gabungan METH dan CAE selama 21 hari. Berat tikus diukur dan prestasi motor dinilai menggunakan ujian kutub menegak dan rasuk sempit. Ekspresi SOD2 dan miR-34a diukur menggunakan Real-time Polymerase Chain Reaction (RT-qPCR). Kumpulan III (300 mg/kg CAE); p<0.001, kumpulan V (METH+300 mg/kg CAE); p<0.01 dan kumpulan VI (METH+500 mg/kg CAE); p<0.01, meningkatkan latensi secara signifikan dalam ujian kutub menegak berbanding kumpulan METH. Manakala, kumpulan III (300 mg/kg CAE); p<0.001 menurunkan latensi secara signifikan dalam ujian rasuk sempit berbanding METH. Pasca rawatan CAE pada tikus yang dirawat dengan METH, kumpulan V (METH+300 mg/kg CAE) dan kumpulan IV (METH+500 mg/kg CAE) secara tidak signifikan meningkatkan ekspresi SOD2 berbanding METH iaitu masing-masing pada 3.78±1.03 dan 4.05±0.19 ganda. Pasca rawatan CAE pada tikus yang dirawat METH, kumpulan V (METH+300 mg/kg CAE) dan kumpulan VI (METH+500 mg/kg CAE) secara tidak signifikan masing-masing meningkatkan ekspresi miR-34a (7.02±3.73 dan 6.75±1.94 ganda) berbanding METH. CAE boleh dicadangkan sebagai terapeutik semula jadi yang menjanjikan untuk keneurotoksikan yang disebabkan oleh METH untuk memperbaiki prestasi motor dan mencetuskan ekspresi SOD2 dan miR-34a.

Kata kunci: Centella asiatica; metamfetamin; mikroRNA-34a; superoksida dismutase II

 

REFERENCES

Alfarra, H.Y. & Omar, M.O. 2013. Centella asiatica: From folk remedy to the medicinal biotechnology- a state revision. International Journal of Biosciences 3(6): 49-67.

Alural, B., Genc, S. & Haggarty, S.J. 2016. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present and future. Prog. Neuropsychopharmacol. Biol. Psychiatry 73: 87-103.

Amjad, S. & Umesalma, S. 2015. Protective effect of Centella asiatica against aluminium-induced neurotoxicity in cerebral cortex, striatum, hypothalamus and hippocampus of rat brain-histopathological, and biochemical approach. Molecular Biomarkers & Diagnosis 6(1): 1-7.

Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., Ahmed, J. & Shahid, M. 2019.  Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience 11: 155.

Ba, Q., Cui, C., Wen, L., Feng, S., Zhou, J. & Yang, K. 2015. Schisandrin B shows neuroprotective effect in 6-OHDA-induced Parkinson’s disease via inhibiting the negative modulation of miR-34a on Nrf2 pathway. Biomedicine & Pharmacotherapy 75: 165-172.

Bae, D., Kim, Y., Kim, J., Kim, Y., Oh, K., Jun, W. & Kim, S. 2014. Neuroprotective effects of Eriobotrya japonica and Salvia miltiorrhiza bunge in in vitro and in vivo models. Animal Cells and Systems 18(2): 119-134.

Bai, X., Ma, Y., Rui, D., Bo, F., Suozhu, S. & Chen, X. 2011. miR-335 and miR- 34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. Journal of the American Society of Nephrology 22(7): 1252-1261.

Balbaa, M., Abdulmalek, S.A. & Khalil, S. 2017. Oxidative stress and expression of insulin signalling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs. PLoS ONE 12(5): 1-23.

Bhatnagar, M., Goel, I., Roy, T., Shukla, S.D. & Khurana, S. 2017. Complete comparison display (CCD) evaluation of ethanol extracts of Centella asiatica and Witania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson’s model of mice. PLoS ONE 5(12): 1-19.

Brecht, M.L. & Herbeck, D. 2013. Methamphetamine use and violent behaviour: Users perception and predictors. J. Drug Issues 43(4): 468-482.

Chen, P., Chen, F., Lei, J., Li, Q. & Zhou, B. 2019. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin attenuates D-galactose-induced brain aging in mice. Neurotherapeutics 16: 1269-1282.

Chen, T., Su, H., Zhong, N., Tan, H., Li, X., Meng, Y., Duan, C., Zhang, C., Bao, J., Xu, D., Song, W., Zou, J., Liu, T., Zhan, Q., Jiang, H. & Zhao, M. 2020. Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: Insights from EEG microstates. BMC Psychiatry 20(334): 1-11.

Flynn, J.M. & Melovn, S. 2013. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radical Biology and Medicine 62: 4-12.

Gray, N.E., Zweig, J.A., Matthews, D.G., Caruso, M., Quinn, J.F. & Soumyanath, A. 2017. Centella asiatica attenuates mitochondrial dysfunction and oxidative stress in Aß-exposed hippocampal neurons. Oxidative Medicine and Cellular Longevity 2017: 7023091.

Gray, N.E., Harris, C.J., Quinn, J.F. & Soumyanath, A. 2016. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. Journal of Ethnopharmacology 180: 78-86.

Haleagrahara, N. & Ponnusamy, K. 2010. Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. The Journal of Toxicological Sciences 35(1): 41-47.

Hirata, H., Ladenheim, B., Rethman, R.B., Epstein, C. & Cadet, J.L. 1995. Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radical radicals. Brain Research 677(2): 345-347.

Horst, C.H., Titze-De-Almeida, R. &Titze-De-Almeida, S.S. 2017. The involvement of Eag1 potassium channels and miR034a in rotenone-induced death of dopaminergic SH-SY5Y cells. Molecular Medicine Reports 15: 1479-1488.

Huang, X., Chen, Y.Y., Shen, Y., Cao, X., Li, A., Liu, Q. & Yuan, T.F. 2107. Methamphetamine abuse impairs motor cortical plasticity and function. Molecular Psychiatry 22(9): 1274-1281.

Jahan, R., Hossain, S., Seraj, S., Nasrin, D., Khatun, Z., Das, P.R. & Rahmatullah, M. 2012. Centella asiatica (L.) Urb. ethnomedicinal uses and their scientific validations. American-Eurasian Journal of Sustainable Agriculture 6(4): 261-270.

Jia, J., Zhang, L., Shi, X., Wu, M., Zhou, X., Liu, X. & Huo, T. 2011. SOD2 mediates amifostine-induced protection against glutamate in PC12 cells. Oxid. Med. Cell. Longev. 2016: 4202437.

Krasnova, I.N., Ladenheim, B., Hodges, A.B., Volkow, N.D. & Cadet, J.L. 2011. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS ONE 6(4): 1-10.

Krishna, G., Chatterjee, S., Krishna, P.A. & Seth, R.K. 2019. Chapter 59 -  MicroRNA expression as an indicator of tissue toxicity and a biomarker in disease and drug-induced toxicological evaluation. In Biomarkers in Toxicology, 2nd ed. edited by Gupta, R.C. Massachusetts: Academic Press. pp. 1047-1072.

Li, N., Bates, D.J., An, J., Terry, D.A. & Wang, E. 2011. Up-regulation of key microRNAs and inverse down-regulation of their predictive oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging 53: 944-955.

Ling, A.P.K., Chan, H.H., Koh, R.Y. & Wong, Y.P. 2017. Neuroprotective roles of asiaticoside on hydrogen peroxide-induced toxicity in SH-SY5Y cells. J. Fundam. Appl. Sci. 9(7S): 636-649.

Liu, X.H., Kato, H., Nakata, N., Kogure, K. & Kato, K. 1993. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain Res. 625: 29-37.

Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25(4): 402-408.

Luong, T.N., Carlisle, H.J., Southwell, A. & Patterson, P.H. 2011. Assessment of motor balance and coordination in mice using the balance beam. Journal of Visualized Experiments 49: 1-3.

Mao, S., Sun, Q., Xiao, H., Zhang, C. & Li, L. 2015. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2. Protein Cell 6(7): 529-540.

Massad, C.A., Washington, T.M., Pautler, R.G. & Klann, E. 2009. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America 106(32): 1376-1381.

Miao, L. & St. Clair, D.K. 2009. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 47(4): 344-356.

Moshiri, M., Roohbakhsh, A., Talebi, M., Iranshahy, M. & Etemad, L. 2020. Role of natural products in mitigation of toxic effects of methamphetamine: A review of in vitro and in vivo studies. Avicenna Journal of Phytomedicine 10(4): 334-351.

Moszczynska, A. & Callan, S.P. 2017. Molecular, behavioural and physiological consequences of methamphetamine neurotoxicity: Implications for treatment. Journal of Pharmacology and Experimental Therapeutics 19: 1-77.

National Anti-Drug Agency. 2018. https://www.adk.gov.my/en/public/drugs-statistics/

Orhan, I.E. 2012. Centella asiatica (L.) Urban: From traditional medicine to modern medicine with neuroprotective potential. Evid. Based Complement Alternat. Med. 2012: 946259.

Parabucki, A.B., Bozic, I.D., Bjelobaba, I.M., Lavrnja, I.C., Brkic, P.D., Jovanovic, T.S., Stojiljkovic, M.B. & Pekovic, S.M. 2012. Hyperbaric oxygenation alters temporal expression pattern of superoxide dismutase 2 after corticol stab injury in rats. Croat. Med. J. 53: 586-597.

Phuah, N.H. & Nagoor, N.H. 2014. Regulation of microRNAs by natural agents: New strategies in cancer therapies. Biomed. Research International 2014: 804510.

Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z. & Oren, M. 2007. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26: 731-743.

Ramkissoon, A. & Wells, P.G. 2015. Methamphetamine oxidative stress, neurotoxicity and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radic. Biol. Med. 89: 358-368.

Ricaurte, G.A., Schuster, C.R. & Seiden, L.S. 1980. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: A regional study. Brain Research 193: 153-163.

Sampath, U. & Janardhanam, V.A. 2013. Asiaticoside, a trisaccharide triterpene induced biochemical and molecular variations in brain of mice with parkinsonism. Translational Neurodegeneration 2: 23.

Shaerzadeh, F., Streit, W.J., Heysieattalab, S. & Khoshbouei, H. 2018. Methamphetamine neurotoxicity, microglia and neuroinflammation. Journal of Neuroinflammation 15(1): 341.

Smith, P.Y., Hernandez-Rapp, J., Jolivette, F., Lecours, C., Bisht, K., Goupil, C., Dorval, V., Parsi, S. & Morin, F. 2014. miR-132/122 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum. Mo. Gen. 24: 6721-6735.

Spencer, J.P.E. 2007. The interactions of flavonoids within neuronal signalling pathways. Genes & Nutrition 2(3): 257-273.

Tal, T.L. & Tanguay, R.L. 2012. Non-coding RNAs- novel targets in neurotoxicity. Neurotoxicology 33(3): 530-544.

Thanh, H.N., Minh, H.P.T., Duc, L.V. &Thanh, T.B. 2016. Protective effect of Coenzyme Q10 on methamphetamine-induced neurotoxicity in the mouse brain. Trend in Medical Research 11(1): 1-10.

Thounaojam, M.C., Jadeja, R.N., Warren, M., Powell, F.L., Raju, R., Gutsaeva, D., Khurana, S., Martin, P.M. & Bartoli, M. 2019. MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants 8(9): 328.

Thrash, B., Thiruchelvan, K., Ahuja, M., Suppiramaniam, V. & Dhanasekaran, M. 2009. Methamphetamine-induced neurotoxicity: The road to Parkinson’s disease. Pharmacological Reports 61: 966-977.

Volkow, N.D. 2013. Research Report Series: Methamphetamine. National Institute on Drug Abuse. pp. 1-10.

Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Leonida-Yee, M., Franceshi, D., Sedler, M.J., Gatley, S.J. & Hitzeman, R. 2001. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abuser. Am. J. Psychiatry 158: 377-382.

Wan, Y., Cui, R., Gu, J., Zhang, X., Xiang, X., Liu, C., Qu, K. & Lin, T. 2017. Identification of four oxidative stress-responsive microRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p in hepatocellular carcinoma. Oxidative Medicine and Cellular Longevity 2017: 5189138.

Wang, C., Ji, B., Cheng, B., Chen, J. & Bai, B. 2014. Neuroprotection of microRNA in neurological disorders (Review). Biomedical Reports 2: 611-619.

Xu, S., Tu, S., Gao, J., Liu, J., Guo, Z., Zhang, J., Liu, X., Liang, J. & Huang, Y. 2018. Protective and restorative effects of the traditional Chinese medicine Jitai tablet against methamphetamine-induced dopaminergic neurotoxicity. BMC Complementary and Alternative Medicine 18(1): 76.

Xu, C.L., Wang, Q.Z., Sun, L.M., Li, X.M., Li, L.F., Zhang, J., Xu, R. & Ma, S.P. 2012.   Asiaticoside: Attenuation of neurotoxicity induced by MPTP in rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacology, Biochemistry and Behavior 100: 413-418.

Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L. & Xiong, K. 2018. The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front. Mol. Neurosci. 11(186): 1-18.

Zainol, M.K., Abd-Hamid, A., Yusof, S. & Muse, R. 2003. Antioxidative activity and total phenolic compound of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry 2: 575-581.

Zarruk, J.G., Garcia-Yebenes, I., Romera, V.G., Ballesteros, I., Moraga, A., Cuartero, M.I., Huratado, O., Sobrado, M. & Pradillo, J.M. 2011. Neurological tests for functional outcome assessment in rodent models of ischemic stroke. Rev. Neurol. 53(10): 607-618.

 

*Corresponding author; email: shiha@uitm.edu.my

 

 

 

previous