Sains Malaysiana 52(1)(2023):
233-244
http://doi.org/10.17576/jsm-2023-5201-19
Ethanol
Extract of Centella asiatica Improved
Methamphetamine-Induced Neurotoxicity on Mouse Model via Stimulating Superoxide
Dismutase II and microRNA-34A Expression
(Ekstrak
Etanol Centella asiatica Menambahbaik
Keneurotoksikan Teraruh Metamfetamin pada Model Tikus melalui Superoksida
Dismutase II dan Ekspresi Mikro)
NURSYAMILA SHAMSUDDIN1, MAZATULIKHMA MAT ZAIN2,
MOHD ILHAM ADENAN3 &
MOHD SHIHABUDDIN AHMAD NOORDEN1,*
1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM),
Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
2Institute of Science (IOS), Universiti Teknologi MARA
(UiTM), 40000 Shah Alam, Selangor Darul Ehsan, Malaysia
3Atta-ur-Rahman Institute for Natural Product Discovery
(AuRins), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak
Alam, Selangor Darul Ehsan, Malaysia
Received:
20 May 2022/Accepted: 23 August 2022
Abstract
Neurotoxicity
induced by a psychostimulant drug, methamphetamine (METH) is associated with
devastating and persistent neurotoxicity effects on the central nervous system
(CNS). Centella asiatica (CA) is
known as an antioxidant and neuroprotective agent. However, there is a limited
study on natural-derived therapeutic to attenuate neurotoxicity induced by
METH. We aimed to investigate the effects of METH and ethanol extract CA (CAE)
on motor performance of animal model and the expression of manganese superoxide
dismutase II (SOD2) and microRNA-34a (miR-34a) in the brain tissue. Male Sprague-Dawley rats were
administered with METH (50 mg/kg per body weight) twice per day for 4 days, CAE
(300 mg/kg & 500 mg/kg per body weight for 21 days and combination of METH
and CAE for 21 day(s). Weight of rat was measured and motor performance was
evaluated using vertical pole and narrow beam tests. Expression of SOD2 and
miR-34a were measured using Quantitative Real-time Polymerase Chain Reaction
(RT-qPCR). Group III
(300 mg/kg CAE); p<0.001, Group IV (500 mg/kg CAE); p<0.001, Group V
(METH+300 mg/kg CAE); p<0.01 and Group VI (METH+500 mg/kg CAE); p<0.01 significantly improved latency in the
vertical pole test compared to METH group. Meanwhile, Group III (300 mg/kg CAE);
p<0.001 and Group IV (500 mg/kg CAE); p<0.001 significantly decreased latency in the narrow
beam test compared to METH. Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and
Group VI (METH+500 mg/kg CAE) non-significantly upregulated the SOD2 expression by 3.78±1.03 and 4.05±0.19
folds compared to METH, respectively. Post-treatment of CAE on METH-treated
rats, Group V
(METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the miR-34a
expression by (7.02±3.73) and (6.75±1.94) folds compared to METH, respectively. CAE could be suggested as a promising
natural-derived therapeutic for METH-induced neurotoxicity to ameliorating
motor performance and triggering SOD2 and miR-34a expression.
Keywords: Centella asiatica; methamphetamine;
microRNA-34a; superoxide dismutase II
Abstrak
Keneurotoksikan
yang disebabkan oleh dadah psikostimulan, metafetamin (METH) dikaitkan dengan
kesan keneurotoksikan yang teruk dan berterusan pada sistem saraf pusat. Centella
asiatiaca (CA) terkenal sebagai agen antioksidan dan neurolindung. Walau
bagaimanapun, terdapat kajian yang terhad mengenai bahan teraputik semula jadi
untuk melemahkan keneurotoksikan yang disebabkan oleh METH. Kami berhasrat
mengkaji kesan METH dan ekstrak etanol CA (CAE) pada prestasi motor model
haiwan dan ekspresi manganese superoksida dismutase II (SOD2) dan mikroRNA-34a
(miR-34a) pada tisu otak. Tikus Sprague-Dawley jantan diberikan METH (50
mg/kg setiap berat badan) dua kali sehari selama 4 hari, CAE (300 mg/kg dan 500
mg/kg setiap berat badan) selama 21 hari dan gabungan METH dan CAE selama 21
hari. Berat tikus diukur dan prestasi motor dinilai menggunakan ujian kutub
menegak dan rasuk sempit. Ekspresi SOD2 dan miR-34a diukur menggunakan Real-time
Polymerase Chain Reaction (RT-qPCR). Kumpulan III (300 mg/kg CAE);
p<0.001, kumpulan V (METH+300 mg/kg CAE); p<0.01 dan kumpulan VI
(METH+500 mg/kg CAE); p<0.01, meningkatkan latensi secara signifikan dalam
ujian kutub menegak berbanding kumpulan METH. Manakala, kumpulan III (300 mg/kg
CAE); p<0.001 menurunkan latensi secara signifikan dalam ujian rasuk sempit
berbanding METH. Pasca rawatan CAE pada tikus yang dirawat dengan METH,
kumpulan V (METH+300 mg/kg CAE) dan kumpulan IV (METH+500 mg/kg CAE) secara
tidak signifikan meningkatkan ekspresi SOD2 berbanding METH iaitu masing-masing
pada 3.78±1.03 dan 4.05±0.19 ganda. Pasca rawatan CAE pada tikus yang dirawat
METH, kumpulan V (METH+300 mg/kg CAE) dan kumpulan VI (METH+500 mg/kg CAE)
secara tidak signifikan masing-masing meningkatkan ekspresi miR-34a (7.02±3.73
dan 6.75±1.94 ganda) berbanding METH. CAE boleh dicadangkan sebagai terapeutik
semula jadi yang menjanjikan untuk keneurotoksikan yang
disebabkan oleh METH untuk memperbaiki prestasi motor dan mencetuskan ekspresi
SOD2 dan miR-34a.
Kata kunci: Centella asiatica; metamfetamin;
mikroRNA-34a; superoksida dismutase II
REFERENCES
Alfarra, H.Y. & Omar, M.O. 2013. Centella asiatica: From folk remedy
to the medicinal biotechnology- a state revision. International Journal of Biosciences 3(6): 49-67.
Alural, B., Genc, S. & Haggarty, S.J. 2016. Diagnostic and
therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present
and future. Prog. Neuropsychopharmacol.
Biol. Psychiatry 73: 87-103.
Amjad, S. & Umesalma, S. 2015. Protective effect of Centella asiatica against
aluminium-induced neurotoxicity in cerebral cortex, striatum, hypothalamus and
hippocampus of rat brain-histopathological, and biochemical approach. Molecular Biomarkers & Diagnosis 6(1): 1-7.
Ayaz,
M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., Ahmed, J. &
Shahid, M. 2019. Flavonoids as
prospective neuroprotectants and their therapeutic propensity in aging
associated neurological disorders. Frontiers in Aging Neuroscience 11:
155.
Ba, Q., Cui, C., Wen, L., Feng, S., Zhou, J. & Yang, K. 2015.
Schisandrin B shows neuroprotective effect in 6-OHDA-induced Parkinson’s
disease via inhibiting the negative modulation of miR-34a on Nrf2 pathway. Biomedicine
& Pharmacotherapy 75: 165-172.
Bae,
D., Kim, Y., Kim, J., Kim, Y., Oh, K., Jun, W. & Kim, S. 2014.
Neuroprotective effects of Eriobotrya
japonica and Salvia miltiorrhiza bunge in in vitro and in vivo models. Animal Cells and Systems 18(2): 119-134.
Bai, X., Ma, Y., Rui, D., Bo, F., Suozhu, S. & Chen, X. 2011.
miR-335 and miR- 34a promote renal senescence by suppressing mitochondrial
antioxidative enzymes. Journal of the American Society of Nephrology 22(7): 1252-1261.
Balbaa, M., Abdulmalek, S.A. & Khalil, S. 2017. Oxidative
stress and expression of insulin signalling proteins in the brain of diabetic
rats: Role of Nigella sativa oil and
antidiabetic drugs. PLoS ONE 12(5): 1-23.
Bhatnagar, M., Goel, I., Roy, T., Shukla, S.D. & Khurana, S.
2017. Complete comparison display (CCD) evaluation of ethanol extracts of Centella asiatica and Witania somnifera shows that they can
non-synergistically ameliorate biochemical and behavioural damages in MPTP
induced Parkinson’s model of mice. PLoS ONE 5(12): 1-19.
Brecht, M.L. & Herbeck, D. 2013. Methamphetamine use and
violent behaviour: Users perception and predictors. J. Drug Issues 43(4): 468-482.
Chen,
P., Chen, F., Lei, J., Li, Q. & Zhou, B. 2019. Activation of the
miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin attenuates
D-galactose-induced brain aging in mice. Neurotherapeutics 16:
1269-1282.
Chen, T., Su, H., Zhong, N., Tan, H., Li, X., Meng, Y., Duan, C.,
Zhang, C., Bao, J., Xu, D., Song, W., Zou, J., Liu, T., Zhan, Q., Jiang, H.
& Zhao, M. 2020. Disrupted brain network dynamics and cognitive functions in
methamphetamine use disorder: Insights from EEG microstates. BMC Psychiatry 20(334): 1-11.
Flynn, J.M. & Melovn, S. 2013. SOD2 in mitochondrial
dysfunction and neurodegeneration. Free
Radical Biology and Medicine 62:
4-12.
Gray, N.E., Zweig, J.A., Matthews, D.G., Caruso, M., Quinn, J.F.
& Soumyanath, A. 2017. Centella
asiatica attenuates mitochondrial dysfunction and oxidative stress in
Aß-exposed hippocampal neurons. Oxidative
Medicine and Cellular Longevity 2017: 7023091.
Gray, N.E., Harris, C.J., Quinn, J.F.
& Soumyanath, A. 2016. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive
function in mice. Journal of Ethnopharmacology 180:
78-86.
Haleagrahara, N. & Ponnusamy, K. 2010. Neuroprotective effect
of Centella asiatica extract (CAE) on
experimentally induced parkinsonism in aged Sprague-Dawley rats. The Journal of Toxicological Sciences 35(1): 41-47.
Hirata, H., Ladenheim, B., Rethman,
R.B., Epstein, C. & Cadet, J.L. 1995. Methamphetamine-induced serotonin
neurotoxicity is mediated by superoxide radical radicals. Brain Research 677(2):
345-347.
Horst, C.H., Titze-De-Almeida, R. &Titze-De-Almeida, S.S.
2017. The involvement of Eag1 potassium channels and miR034a in
rotenone-induced death of dopaminergic SH-SY5Y cells. Molecular
Medicine Reports 15: 1479-1488.
Huang, X., Chen, Y.Y., Shen, Y., Cao, X., Li, A., Liu, Q. &
Yuan, T.F. 2107. Methamphetamine abuse impairs motor cortical plasticity and
function. Molecular Psychiatry 22(9): 1274-1281.
Jahan, R., Hossain, S., Seraj, S., Nasrin, D., Khatun, Z., Das,
P.R. & Rahmatullah, M. 2012. Centella
asiatica (L.) Urb. ethnomedicinal uses and their scientific validations. American-Eurasian Journal of Sustainable
Agriculture 6(4): 261-270.
Jia, J., Zhang, L., Shi, X., Wu, M.,
Zhou, X., Liu, X. & Huo, T. 2011. SOD2 mediates amifostine-induced
protection against glutamate in PC12 cells. Oxid. Med. Cell. Longev. 2016: 4202437.
Krasnova, I.N., Ladenheim, B., Hodges, A.B., Volkow, N.D. &
Cadet, J.L. 2011. Chronic methamphetamine administration causes differential
regulation of transcription factors in the rat midbrain. PLoS ONE 6(4): 1-10.
Krishna, G., Chatterjee, S., Krishna, P.A. & Seth, R.K. 2019.
Chapter 59 - MicroRNA expression as an
indicator of tissue toxicity and a biomarker in disease and drug-induced
toxicological evaluation. In Biomarkers in Toxicology, 2nd ed. edited by
Gupta, R.C. Massachusetts: Academic Press. pp. 1047-1072.
Li, N., Bates, D.J., An, J., Terry, D.A. & Wang, E. 2011.
Up-regulation of key microRNAs and inverse down-regulation of their predictive
oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol.
Aging 53: 944-955.
Ling, A.P.K., Chan, H.H., Koh, R.Y.
& Wong, Y.P. 2017. Neuroprotective roles of asiaticoside on hydrogen
peroxide-induced toxicity in SH-SY5Y cells. J. Fundam. Appl. Sci. 9(7S): 636-649.
Liu, X.H., Kato, H., Nakata, N., Kogure, K. & Kato, K. 1993.
An immunohistochemical study of copper/zinc superoxide dismutase and manganese
superoxide dismutase in rat hippocampus after transient cerebral ischemia. Brain
Res. 625: 29-37.
Livak, K.J. & Schmittgen, T.D.
2001. Analysis of relative gene expression data using real-time quantitative
PCR and the 2(-Delta Delta C (T)) method. Methods 25(4):
402-408.
Luong, T.N., Carlisle, H.J., Southwell, A. & Patterson, P.H.
2011. Assessment of motor balance and coordination in mice using the balance
beam. Journal of Visualized Experiments 49: 1-3.
Mao,
S., Sun, Q., Xiao, H., Zhang, C. & Li, L. 2015. Secreted miR-34a in
astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons
to neurotoxins by targeting Bcl-2. Protein Cell 6(7): 529-540.
Massad, C.A., Washington, T.M., Pautler, R.G. & Klann, E.
2009. Overexpression of SOD-2 reduces hippocampal superoxide and prevents
memory deficits in a mouse model of Alzheimer’s disease. Proceedings of the
National Academy of Sciences of the United States of America 106(32):
1376-1381.
Miao, L. & St. Clair, D.K. 2009. Regulation of superoxide
dismutase genes: Implications in disease. Free Radic. Biol. Med. 47(4):
344-356.
Moshiri, M., Roohbakhsh, A., Talebi, M., Iranshahy, M. &
Etemad, L. 2020. Role of natural products in mitigation of toxic effects of
methamphetamine: A review of in vitro and in vivo studies. Avicenna Journal
of Phytomedicine 10(4): 334-351.
Moszczynska, A. & Callan, S.P. 2017. Molecular, behavioural
and physiological consequences of methamphetamine neurotoxicity: Implications for
treatment. Journal of Pharmacology and
Experimental Therapeutics 19:
1-77.
National Anti-Drug Agency. 2018. https://www.adk.gov.my/en/public/drugs-statistics/
Orhan, I.E. 2012. Centella
asiatica (L.) Urban: From traditional medicine to modern medicine with
neuroprotective potential. Evid. Based
Complement Alternat. Med. 2012:
946259.
Parabucki, A.B., Bozic, I.D., Bjelobaba, I.M., Lavrnja, I.C.,
Brkic, P.D., Jovanovic, T.S., Stojiljkovic, M.B. & Pekovic, S.M. 2012.
Hyperbaric oxygenation alters temporal expression pattern of superoxide
dismutase 2 after corticol stab injury in rats. Croat. Med. J. 53:
586-597.
Phuah,
N.H. & Nagoor, N.H. 2014. Regulation of microRNAs by natural agents: New
strategies in cancer therapies. Biomed. Research International 2014:
804510.
Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y.,
Rosenfeld, N., Moskovits, N., Bentwich, Z. & Oren, M. 2007. Transcriptional
activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26:
731-743.
Ramkissoon, A. & Wells, P.G. 2015. Methamphetamine oxidative
stress, neurotoxicity and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radic. Biol. Med. 89: 358-368.
Ricaurte, G.A., Schuster, C.R. & Seiden, L.S. 1980. Long-term
effects of repeated methylamphetamine administration on dopamine and serotonin
neurons in the rat brain: A regional study. Brain
Research 193: 153-163.
Sampath, U. & Janardhanam, V.A. 2013. Asiaticoside, a trisaccharide triterpene induced biochemical and molecular variations in brain of mice with
parkinsonism. Translational
Neurodegeneration 2: 23.
Shaerzadeh, F., Streit, W.J., Heysieattalab, S. & Khoshbouei,
H. 2018. Methamphetamine neurotoxicity, microglia and neuroinflammation. Journal of Neuroinflammation 15(1): 341.
Smith,
P.Y., Hernandez-Rapp, J., Jolivette, F., Lecours, C., Bisht, K., Goupil, C.,
Dorval, V., Parsi, S. & Morin, F. 2014. miR-132/122 deficiency impairs tau
metabolism and promotes pathological aggregation in vivo. Hum. Mo. Gen. 24: 6721-6735.
Spencer,
J.P.E. 2007. The interactions of flavonoids within neuronal signalling
pathways. Genes & Nutrition 2(3): 257-273.
Tal, T.L. & Tanguay, R.L. 2012. Non-coding RNAs- novel targets
in neurotoxicity. Neurotoxicology 33(3): 530-544.
Thanh, H.N., Minh, H.P.T., Duc, L.V. &Thanh, T.B. 2016.
Protective effect of Coenzyme Q10 on methamphetamine-induced neurotoxicity in
the mouse brain. Trend in Medical Research 11(1): 1-10.
Thounaojam, M.C., Jadeja, R.N., Warren, M., Powell, F.L., Raju,
R., Gutsaeva, D., Khurana, S., Martin, P.M. & Bartoli, M. 2019.
MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature senescence
through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants 8(9): 328.
Thrash, B., Thiruchelvan, K., Ahuja, M., Suppiramaniam, V. &
Dhanasekaran, M. 2009. Methamphetamine-induced neurotoxicity: The road to
Parkinson’s disease. Pharmacological Reports 61: 966-977.
Volkow, N.D. 2013. Research Report Series: Methamphetamine. National Institute on Drug Abuse. pp.
1-10.
Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Leonida-Yee,
M., Franceshi, D., Sedler, M.J., Gatley, S.J. & Hitzeman, R. 2001. Association
of dopamine transporter reduction with psychomotor impairment in
methamphetamine abuser. Am. J. Psychiatry 158: 377-382.
Wan, Y., Cui, R., Gu, J., Zhang, X., Xiang, X., Liu, C., Qu, K.
& Lin, T. 2017. Identification of four oxidative stress-responsive microRNAs,
miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p in hepatocellular carcinoma. Oxidative
Medicine and Cellular Longevity 2017: 5189138.
Wang, C., Ji, B., Cheng, B., Chen, J. & Bai, B. 2014.
Neuroprotection of microRNA in neurological disorders (Review). Biomedical
Reports 2: 611-619.
Xu, S., Tu, S., Gao, J., Liu, J., Guo, Z., Zhang, J., Liu, X.,
Liang, J. & Huang, Y. 2018. Protective and restorative effects of the
traditional Chinese medicine Jitai tablet against methamphetamine-induced
dopaminergic neurotoxicity. BMC Complementary and Alternative Medicine 18(1): 76.
Xu, C.L., Wang, Q.Z., Sun, L.M., Li, X.M., Li, L.F., Zhang, J.,
Xu, R. & Ma, S.P. 2012. Asiaticoside: Attenuation of neurotoxicity induced by MPTP in rat model
of Parkinsonism via maintaining redox balance and up-regulating the ratio of
Bcl-2/Bax. Pharmacology, Biochemistry and Behavior 100: 413-418.
Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J.,
Liao, L. & Xiong, K. 2018. The main molecular mechanisms underlying methamphetamine-induced
neurotoxicity and implications for pharmacological treatment. Front. Mol.
Neurosci. 11(186): 1-18.
Zainol, M.K., Abd-Hamid, A., Yusof, S. & Muse, R. 2003.
Antioxidative activity and total phenolic compound of leaf, root and petiole of
four accessions of Centella asiatica (L.)
Urban. Food Chemistry 2: 575-581.
Zarruk, J.G., Garcia-Yebenes, I., Romera, V.G., Ballesteros, I.,
Moraga, A., Cuartero, M.I., Huratado, O., Sobrado, M. & Pradillo, J.M.
2011. Neurological tests for functional outcome assessment in rodent models of
ischemic stroke. Rev. Neurol. 53(10): 607-618.
*Corresponding
author; email: shiha@uitm.edu.my
|