Sains Malaysiana 52(1)(2023):
281-294
http://doi.org/10.17576/jsm-2023-5201-23
A New
Exponentiated Beta Burr Type X Distribution: Model, Theory, and Applications
(Taburan Beta Burr Jenis X Baru yang Dipertingkatkan: Model, Teori dan Aplikasi)
YIT
LENG OH1,2, FONG PENG LIM1,*, CHUEI YEE CHEN1, WENDY SHINYIE LING1 & YUE FANG LOH3
1Department
of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Faculty
of Business, Multimedia University, 75450 Melaka, Malaysia
3Faculty of Business and Management, UCSI University, 56000
Kuala Lumpur, Federal Territory, Malaysia
Received:
20 May 2022/Accepted: 10 October 2022
Abstract
In recent years,
many attempts have been carried out to develop the Burr type X distribution,
which is widely used in fitting lifetime data. These extended Burr type X distributions can model the hazard function in decreasing, increasing and bathtub shapes, except for unimodal. Hence, this paper aims to introduce a new
continuous distribution, namely exponentiated beta Burr type X distribution,
which provides greater flexibility in order to overcome the deficiency of the existing extended
Burr type X distributions.
We first present its density and cumulative function expressions. It is then
followed by the mathematical properties of this new distribution, which include
its limit behaviour, quantile function, moment, moment generating function, and
order statistics. We use maximum likelihood approach to estimate the parameters
and their performance is assessed via a simulation study with varying parameter
values and sample sizes. Lastly, we use two real data sets to illustrate the
performance and flexibility of the proposed distribution. The
results show that the proposed distribution gives better fits in modelling
lifetime data compared to its sub-models and some extended Burr type X
distributions. Besides, it is very competitive and can be used as an
alternative model to some nonnested models. In summary, the proposed distribution is very flexible and able to
model various shaped hazard functions, including the increasing, decreasing,
bathtub, and unimodal.
Keywords: Beta
generalized; Burr type X; exponentiated; survival analysis; unimodal
Abstrak
Dalam beberapa tahun kebelakangan ini, banyak percubaan telah dijalankan
untuk membangunkan taburan Burr jenis X yang digunakan secara meluas dalam
model sepanjang hayat yang sesuai. Taburan lanjutan Burr jenis X ini boleh
memodelkan fungsi hazard dalam bentuk menurun, meningkat dan bathtub,
kecuali bagi unimod. Kertas ini bertujuan untuk memperkenalkan taburan
berterusan baharu, iaitu taburan Burr jenis X beta eksponen, yang lebih
keluwesan, bagi mengatasi kekurangan taburan lanjutan Burr jenis X sedia
ada. Kami bermula dengan membentangkan ketumpatan dan ungkapan fungsi
terkumpulnya. Ia kemudiannya diikuti dengan sifat matematik taburan baharu ini,
yang merangkumi kelakuan hadnya, fungsi kuantil, momen, fungsi penjanaan momen
dan statistik pesanan. Kami menggunakan pendekatan
kemungkinan maksimum untuk menganggarkan parameter dan prestasinya dinilai
melalui kajian simulasi dengan nilai parameter dan saiz sampel yang
berbeza-beza. Akhir sekali, kami menggunakan dua set data sebenar untuk
menggambarkan prestasi dan berkefleksibelan taburan yang dicadangkan. Keputusan
menunjukkan bahawa taburan yang dicadangkan memberikan kesesuaian yang lebih
baik dalam pemodelan data sepanjang hayat berbanding dengan sub-modelnya dan beberapa
taburan lanjutan Burr jenis X. Selain itu, ia sangat bersaing dan boleh
digunakan sebagai model alternatif kepada beberapa model tidak bersarang.
Secara ringkasnya, taburan yang dicadangkan adalah sangat fleksibel dan boleh
memodelkan pelbagai bentuk fungsi hazard, termasuk peningkatan,
penurunan, bathtub dan unimod.
Kata kunci: Analisis
kemandirian; beta teritlak; Burr jenis X; eksponen; unimod
REFERENCES
Abouelmagd, T.H.M., Hamed, M.S. & Afify, A.Z. 2017. The extended Burr XII distribution with variable
shapes for the hazard rate. Pakistan Journal of Statistics and
Operation Research 13(3): 687-698.
Afify, A.Z. & Mead, M.E. 2017. On five-parameter Burr XII distribution:
Properties and applications. South African Statistical Journal 51(1): 67-80.
Afify,
A.Z., Cordeiro, G.M., Ortega, E.M., Yousof, H.M.
& Butt, N.S. 2018. The four-parameter Burr XII distribution: Properties,
regression model, and applications. Communications in Statistics-Theory
and Methods 47(11): 2605-2624.
Akaike, H. 1974. A new look at
the statistical model identification. IEEE Transactions on Automatic
Control 19(6): 716-723.
Burr, I.W. 1942. Cumulative
frequency functions. Ann. Math. Stat 13(2): 215-232.
Da Silva, R.V., Gomes-Silva,
F., Ramos, M.W.A. & Cordeiro, G.M. 2015. The exponentiated Burr XII Poisson
distribution with application to lifetime data. International Journal
of Statistics and Probability 4(4): 112-131.
Dikko, H.G., Aliyu, Y. & Alfa, S. 2017. The beta-burr type v
distribution: Its properties and application to real life data. International
Journal of Advanced Statistics and Probability 5(2): 83-86.
Eugene, N., Lee, C. & Famoye, F. 2002. Beta-normal distribution and its
applications. Commun. Stat. Theory Methods 31(4): 497-512.
Gupta, R.C., Gupta, P.L. &
Gupta, R.D. 1998. Modeling failure time data by
Lehman alternatives. Commun. Stat. Theory
Methods 27(4): 887-904.
Handique, L. & Chakraborty, S. 2018. A new four-parameter extension of
Burr-XII distribution: Its properties and applications. Japanese
Journal of Statistics and Data Science 1(2): 271-296.
Hery, M.A., Ibrahim, M. & June, L.W. 2014. BFGS method: A new search
direction. Sains Malaysiana 43(10):
1591-1597.
Ibrahim, N.A., Khaleel, M.A., Merovci, F., Kilicman, A. & Shitan, M. 2017. Weibull Burr X distribution properties and
application. Pakistan Journal of
Statistics 33(5): 315-336.
Khaleel, M.A., Ibrahim, N.A., Shitan, M. & Merovci, F.
2018. New extension of Burr Type X distribution properties with application. J.
King Saud Univ. Sci. 30(4): 450-457.
Khaleel, M.A., Ibrahim, N.A., Shitan, M. & Merovci, F.
2016. Some properties of Gamma Burr type X distribution with application. AIP
Conference Proceedings 1739(1): 020087.
Madaki, U.Y., Bakar, M.R.A. & Handique, L. 2018.
Beta Kumaraswamy Burr Type X distribution and its properties. Preprints 1: 1-34.
Merovci, F., Khaleel, M.A., Ibrahim, N.A. & Shitan,
M. 2016. The Beta Burr Type X distribution properties with application. Springerplus 5(1): 1-18.
Murthy, D.P., Xie, M. & Jiang, R. 2004. Weibull Models.
New Jersey: John Wiley & Sons.
Paranaíba, P.F., Ortega, E.M., Cordeiro, G.M. & Pescim,
R.R. 2011. The beta Burr XII distribution with application to lifetime
data. Computational Statistics & Data Analysis 55(2):
1118-1136.
Phoong, S.Y. & Ismail, M.T. 2015. A comparison between Bayesian and
maximum likelihood estimations in estimating finite mixture model for financial
data. Sains Malaysiana 44(7):
1033-1039.
Schwarz, G. 1978. Estimating
the dimension of a model. The Annals of Statistics 6(2): 461-464.
Surles, J.G. & Padgett, W.J. 2001. Inference for reliability and
stress-strength for a scaled Burr Type X distribution. Lifetime Data Anal. 7(2): 187-200.
Tahir, M.H., Cordeiro, G.M.,
Mansoor, M. & Zubair, M. 2015. The Weibull-Lomax distribution: Properties
and applications. Hacettepe Journal of
Mathematics and Statistics 44(2): 455-474.
*Corresponding
author; email: fongpeng@upm.edu.my
|