Sains Malaysiana 52(1)(2023):
295-304
http://doi.org/10.17576/jsm-2023-5201-24
Approximation of the Sum of
Independent Lognormal Variates using Lognormal Distribution by Maximum
Likelihood Estimation Approached
(Penghampiran terhadap Jumlah
Variat Tak Bersandar menggunakan Taburan Lognormal Berdasarkan Pendekatan
Penganggaran Kebolehjadian Maksimum)
ABDUL RAHMAN OTHMAN1, LAI CHOO HENG2, SONIA AÏSSA3 & NORA
MUDA4,*
1School of Distance
Education, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
2Kolej Vokasional Nibong
Tebal, Jalan Bukit Panchor, 14300 Nibong Tebal, Pulau Pinang, Malaysia
3Institut National de la
Recherche Scientifique, Énergie Matériaux Télécommunications Research Centre, 800, De La Gauchetière Ouest, Bureau 6900, Montréal, Québec H5A 1K6, Canada
4Department of Mathematical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 11 March 2022/Accepted:
10 October 2022
Abstract
Three
methods of approximating the sum of lognormal variates to a lognormal
distribution were studied. They were the Wilkinson approximation, the Monte
Carlo version of the Wilkinson approximation and the approximation using
estimated maximum likelihood lognormal parameters. The lognormal variates were
generated empirically using Monte Carlo simulation based on several conditions
such as number of lognormal variates in the sum, number of sample points in the
variates, the variates are independent and identically distributed (IID) and
also not identically distributed (NIID) with lognormal parameters. Evaluation
of all three lognormal approximation methods was performed using the Anderson
Darling test. Results show that the approximation using estimated maximum
likelihood lognormal parameters produced Type I errors close to the 0.05 target
and is considered the best approximation.
Keywords: Anderson-Darling
test; lognormal approximation; maximum
likelihood; sum of lognormal variates; Wilkinson
Abstrak
Tiga
kaedah penghampiran bagi jumlah variat lognormal terhadap taburan lognormal
telah dikaji. Tiga kaedah penghampiran tersebut adalah kaedah penghampiran
Wilkinson, kaedah versi Monte Carlo bagi penghampiran Wilkinson dan kaedah
penghampiran dengan penganggaran kebolehjadian maksimum bagi parameter
lognormal. Pemboleh ubah lognormal dijana secara empirik melalui simulasi Monte
Carlo dengan beberapa keadaan simulasi iaitu bilangan jumlah pemboleh ubah
lognormal, bilangan sampel bagi pemboleh ubah lognormal, pemboleh ubah
lognormal tak bersandar dan tertabur secara secaman mengikut taburan (IID) dan
juga tidak secaman mengikut taburan (NIID) berdasarkan parameter lognormal.
Penilaian bagi ketiga-tiga kaedah penghampiran lognormal tersebut dijalankan
menggunakan ujian Anderson Darling. Hasil menunjukkan penghampiran menggunakan
penganggaran kebolehjadian maksimum terhadap parameter lognormal telah
menghasilkan ralat Jenis 1 menghampiri nilai sasaran ralat 0.05 dan dikatakan sebagai
penghampiran terbaik.
Kata kunci: Jumlah variat
lognormal; kebolehjadian maksimum; penghampiran lognormal; ujian
Anderson-Darling; Wilkinson
REFERENCES
Abdul Majid, M.H. & Ibrahim, K. 2021. Composite pareto distributions
for modelling household income distribution in Malaysia. Sains Malaysiana 50(7): 2047-2058.
Beaulieu, N.C. & Xie, Q. 2004. An optimal lognormal approximation to
lognormal sum distributions. IEEE
Transactions on Vehicular Technology53: 479-489.
Becker, D.N. 1991. Statistical tests of the lognormal distribution as a
basis for interest rate changes. Transactions of the Society of Actuaries 43:
7-72.
Bradley, J.V. 1978. Robustness? British Journal of Mathematical and
Statistical Psychology 31: 144-152.
Bromideh, A.A. 2012. Discriminating between Weibull and Log-Normal
distributions based on Kullback-Leibler divergence. Istanbul University
Econometrics and Statistics e-Journal 16(1): 45-54.
Cardieri, P. & Rappaport, T.S. 2000. Statistics of the sum of
lognormal variables in wireless communications. In Spring 2000 Vehicular.
Technology Conference: IEEE 51st Vehicular Technology Conference
Proceedings May 15-18, Tokyo, Japan. pp. 1823-1827.
Cobb, B.R., Rumí, R. & Salmerón, A. 2012. Approximating the distribution of a sum of log-normal random variables. In The Proceedings of the Sixth European
Workshop on Probabilistic Graphical Models. pp. 67-74.
Cohen, A.C. 1951. Estimating parameters of logarithmic-normal
distributions by maximum likelihood. Journal of the American Statistical
Association 46: 206-212.
Di Renzo, M., Imbriglio,
L., Graziosi, F. & Santucci, F. 2009. Distributed data fusion over
correlated log-normal sensing and reporting channels: Application to cognitive
radio networks. IEEE Transactions on
Wireless Communications 8: 5813-5821.
Havemann, F., Heinz, M.
& Kretschme, H. 2006. Collaboration and distances between German
immunological institutes - A trend analysis. Journal of Biomedical Discovery and Collaboration 1: 6.
Keselman, H.J., Othman, A.R. & Wilcox, R. 2014. Preliminary testing
for normality in the multi-group problem: Is this a good practice? Clinics
in Dermatology 2: 29-43.
Keselman, H.J., Othman, A.R. & Wilcox, R. 2013. Preliminary testing
for normality: Is this good practice? Journal of Modern Applied Statistical
Methods 2: 2-19.
Limpert, E., Stahel, W.A. & Abbt, M. 2001. Log-normal distribution
across the sciences: Keys and clue. Bioscience 51(5): 341-352.
Loewenstein, Y., Kuras, A.
& Rumpel, S. 2011. Multiplicative dynamics underlie the emergence of the
log-normal distribution of spine sizes in the neocortex. Journal of Neuroscience31:
9481-9488.
Muhammad Farouk, Nazrina
Aziz & Zakiyah Zain. 2020. The application of lognormal distribution on the
new two-sided group chain sampling plan. Sains
Malaysiana 49(5): 1145-1152.
Osborn, J.F., Cattaruzza,
M.S., Ferri, A.M., De Angelis, F., Renzi, D., Marani, A. & Vaira, D. 2013.
How long it will take to reduce gastric cancer incidence by eradicating Heliobacter pylori infection? Cancer Prevention Research 6: 695-700.
Othman, A.R., Keselman, H.J. & Wilcox, R. 2015. Assessing normality:
Applications in multi-group designs. Malaysian
Journal of Mathematical Sciences 9: 53-65.
Saleem, M., Sieskul, B.T.
& Kaiser, T. 2006. Channel capacity assessments in UWB communication system
over lognormal fading. The Institution of Engineering and Technology Seminar
on Ultra Wideband Systems, Technologies and Applications. pp. 155-159.
Santos Filho, J.C.S.,
Yacoub, M.D. & Cardieri, P. 2006. Highly accurate range-Adaptive lognormal
approximation to lognormal sum distributions. Electronics Letters 42: 361-363.
Santos Filho, J.C.S.,
Cardieri, P. & Yacoub, M.D. 2005. Simple accurate lognormal approximation
to lognormal sums. Electronics Letters 41: 1016-1017.
SAS Institute Inc. SAS
OnlineDoc 9.4. 2015; Cary, NC.
Schwartz, S.C. & Yeh,
Y.S. 1982. On the distribution function and moments of power sums with
lognormal components. Bell Labs Technical
Journal 61: 1441-1462.
Selim, B., Alhussein, O.,
Muhaidat, S., Karagiannidis, G.K. & Liang, J. 2016. Modeling and analysis
of wireless channels via the mixture of Gaussian distribution. IEEE
Transactions on Vehicular Technology 65: 8309-8321.
Shafiq, M., Alamgir &
Atif, M. 2016. On the estimation of three parameters lognormal distribution
based on fuzzy life time data. Sains
Malaysiana 45(11): 1773-1777.
Stephens, M.A. 1979. Tests
of fit for the logistic distribution based on the empirical distribution
function. Biometrika 66: 591-595.
Stephens, M.A. 1977.
Goodness of fit for the extreme value distribution. Biometrika 64: 583-588.
Stephens, M.A. 1977a. Goodness of Fit with Special Reference to
Tests for Exponentiality. Technical Report No. 262, Department of
Statistics, Stanford University, Stanford, CA.
Stephens, M.A. 1976.
Asymptotic results for goodness-of-fit statistics with unknown parameters. Annals of Statistics 4: 357-369.
Stephens, M.A. 1974. EDF
statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 69: 730-737.
Wagner, P.J. 2011.
Modelling rate distributions using character compatibility: Implications for
morphological evolution among fossil invertebrates. Biology Letters 8: 143-146.
Wawrik, B., Kutliev, D.,
Abdivasievna, U.A., Kukor, J.J., Zylstra, G.J. & Kerkhof, L. 2007.
Biogeography of actinomycete communities and Type II polyketide synthase genes
in soils collected in New Jersey and Central Asia. Applied and Environmental
Microbiology 73: 2982-2989.
*Corresponding author;
email: noramuda@ukm.edu.my
|