Sains Malaysiana 52(1)(2023): 35-46
http://doi.org/10.17576/jsm-2023-5201-03
Cytoskeletal Morphological Changes of Mesenchymal
Stem Cells after Oxidant Damage and its Prevention by Thymoquinone
(Perubahan Morfologi Sitokerangka Sel Stem Mesenkima
selepas Kerosakan Oksidan dan Pencegahannya oleh Timoquinon)
SUHAIMI
DRAMAN1, NURUL KABIR1,* &
DURRIYYAH SHARIFAH HASAN ADLI2
1Institute of Biological Sciences, Faculty of Science,
Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Centre for Civilisational Dialogue, Universiti Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received: 29
September 2021/Accepted: 3 November 2022
Abstract
The functional
integrity of the cytoskeleton of mesenchymal stem cells (MSCs) is essential for
its differentiation into multiple cell lineages including adipocytes,
chondrocytes, and osteoblasts. Abnormalities in the cytoskeletal proteins such
as actin and microtubule can cause disrupted cell signalling and irregular
movements of organelles leading to cell death. This study investigated
cytoskeletal and nuclear morphological changes of the MSC due to oxidative
damage by hydrogen peroxide (H2O2) and the possible
prevention of these changes by the antioxidant thymoquinone (TQ). Bone
marrow MSCs from Sprague Dawley rats were cultured and treated with different
concentrations of H2O2 with or without TQ to observe the
potential protective activity. Triple-label fluorescence immunocytochemistry
was performed post-treatment to observe the nucleus, actin and microtubules
using 4’,6-diamidino-2-phenylindole (DAPI), Alexa Fluor 488-labelled phalloidin
and Cy3-labelled anti-tubulin antibody, respectively. The normal stem cell
cytoskeleton demonstrated intact actin and microtubule structures along with
normal appearance of the nucleus. However, oxidative damage by H2O2 caused a severe disruption of the cytoskeletal morphology of the actin and
microtubule along with apoptosis and necrosis of the nucleus. Interestingly,
both immunocytochemical and Fluorescence-Activated Cell Sorting (FACS) results
showed that these morphological changes were prevented by TQ at low
concentrations while higher concentrations of TQ were harmful. This study
suggested that TQ could save MSCs from oxidative-induced cell death.
Keywords:
Cytoskeleton; oxidative damage; stem cell; thymoquinone
Abstrak
Keutuhan fungsi
sitokerangka sel induk mesenkima (MSCs) adalah penting untuk pembezaannya
kepada pelbagai keturunan sel termasuk adiposit, kondrosit dan osteoblas.
Keabnormalan dalam protein sitokerangka seperti aktin dan mikrotubul boleh
mengakibatkan isyarat sel terganggu dan pergerakan organel tidak teratur yang
membawa kepada kematian sel. Penyelidikan ini mengkaji perubahan morfologi
sitokerangka dan nukleus MSC akibat kerosakan oksidatif oleh hidrogen peroksida
(H2O2) dan kemungkinan pencegahan perubahan ini oleh
antioksidan, timoquinon (TQ).
MSC sumsum tulang daripada tikus Sprague Dawley telah dikulturkan dan dirawat
dengan kepekatan H2O2 yang berbeza dengan atau tanpa TQ
untuk mencerap potensi aktiviti perlindungan. Imunositokimia triple-label
fluorescence telah dilakukan selepas rawatan untuk mencerap nukleus, aktin
dan mikrotubul sel menggunakan masing-masing 4’,6-diamidino-2-fenilindol (DAPI), faloidin terlabel Alexa Fluor 488 dan
antibodi anti-tubulin terlabel Cy3. Sitokerangka sel induk normal menunjukkan
struktur aktin dan mikrotubul yang utuh berserta dengan penampilan normal
nukleus. Walau bagaimanapun, kerosakan oksidatif oleh H2O2 mengakibatkan gangguan teruk ke atas morfologi sitokerangka aktin dan
mikrotubul berserta dengan apoptosis dan nekrosis nukleus. Menariknya, kedua-dua
hasil imunositokimia dan Fluorescence-activated Cell Sorting (FACS)
menunjukkan bahawa perubahan morfologi ini dihalang oleh TQ pada kepekatan
rendah manakala kepekatan TQ yang lebih tinggi adalah berbahaya. Kajian ini
menyarankan bahawa TQ boleh menyelamatkan MSC daripada kematian sel yang
disebabkan oleh oksidan.
Kata kunci: Kerosakan oksidatif; sel induk; sitokerangka; timoquinon
REFERENCES
Abd-Elkareem, M., Abd-El-Rahman, M., Khalil, N. & Amer, A.
2021. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate
challenged rats. Scientific Reports 11(1): 13519.
Acharya, B., Chatterjee, A., Ganguli, A., Bhattacharya, S. &
Chakrabarti, G. 2014. Thymoquinone inhibits microtubule polymerization by
tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie 97: 78-91.
Ahlatci, A., Kuzhan, A., Taysi, S., Demirtas, O., Alkis, H.,
Tarakcioglu, M., Demirci, A., Caglayan, D., Saricicek, E. & Cinar, K. 2014.
Radiation-modifying abilities of Nigella
sativa and Thymoquinone on radiation-induced nitrosative stress in the
brain tissue. Phytomedicine 21(5): 740-744.
Ardiana, M., Pikir, B., Santoso, A., Hermawan, H. & Al-Farabi,
M. 2020. Effect of Nigella sativa supplementation on oxidative stress and antioxidant parameters: A meta-analysis
of randomized controlled trials. The Scientific World Journal 2020:
2390706.
Ates, M.B. & Ortatatli, M. 2021. The effects of Nigella sativa seeds and Thymoquinone on
aflatoxin phase-2 detoxification through glutathione and
glutathione-s-transferase alpha-3, and the relationship between aflatoxin
B1-DNA. Toxicon 193: 86-92.
Ayuob, N., Balgoon, M., El-Mansy, A., Mubarak, W. & Firgany,
A. 2020. Thymoquinone upregulates catalase gene expression and preserves the
structure of the renal cortex of propylthiouracil-induced hypothyroid rats. Oxidative
Medicine and Cellular Longevity 2020: 3295831.
Badary, O., Taha, R., Gamal El-Din, A. & Abdel-Wahab, M. 2003.
Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical
Toxicology 26(2): 87-98.
Badr, G., Mohany, M. & Abu-Tarboush, F. 2011. Thymoquinone
decreases F-actin polymerization and the proliferation of human multiple
myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids
in Health and Disease 10(1): 236.
Bellion, P., Olk, M., Will, F., Dietrich, H., Baum, M.,
Eisenbrand, G. & Janzowski, C. 2009. Formation of hydrogen peroxide in cell
culture media by apple polyphenols and its effect on antioxidant biomarkers in
the colon cell line HT-29. Molecular Nutrition & Food Research 53(10): 1226-1236.
Ben-Shmuel, A., Batel, S., Guy, B. & Mira, B. 2021. The role
of the cytoskeleton in regulating the natural killer cell immune response in
health and disease: From signaling dynamics to function. Frontiers in Cell
and Developmental Biology 9: 609532.
Bestetti, S., Mauro, G., Ilaria, S., Paolo, P., Alessandro, R.,
Roberto, S. & Iria, M.F. 2020. Human aquaporin-11 guarantees efficient
transport of H2O2 across the endoplasmic reticulum
membrane. Redox Biology 28: 101326.
Boveris, A. & Cadenas, E. 2001. Mitochondrial production of
hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. International
Union of Biochemistry and Molecular Biology Life 50(4): 245-250.
Cheeseman, K. & Slater, T. 1993. An introduction to free
radical biochemistry. British Medical Bulletin 49(3): 481-493.
Chen, H., Ousheng, L., Sijia, C. & Yueying, Z. 2021. Aging and
mesenchymal stem cells: Therapeutic opportunities and challenges in the older
group. Gerontology 68(3): 339-352.
Ciftci, E., Turkoglu, V. & Bas, Z. 2021. Inhibition effect of
thymoquinone and lycopene compounds on glutathione reductase enzyme activity
purified from human erythrocytes. Journal of Biomolecular Structure and
Dynamics 40(20): 10086-10093.
Demain, A. & Vaishnav, P. 2010. Natural products for cancer
chemotherapy. Microbial Biotechnology 4(6): 687-699.
Dupré, L., Boztug, K. & Pfajfer, L. 2021. Actin dynamics at
the T cell synapse as revealed by immune-related actinopathies. Frontiers in
Cell and Developmental Biology 9: 665519.
El-Mahdy, M., Zhu, Q., Wang, Q., Wani, G. & Wani, A. 2005.
Thymoquinone induces apoptosis through activation of caspase-8 and
mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. International
Journal of Cancer 117(3): 409-417.
Emerson, P., Tejas, D., Luke, S., Shehane, M., Megan, H., Paula,
B., Shyam, P., Mikhail, A., David, G. & Liza, T. 2022. Left atrial strain
in cardiac surveillance of bone marrow transplant patients with prior
anthracycline exposure. International Journal of Cardiology 354: 68-74.
Eteraf-Oskouei, T. & Moslem, N. 2013. Traditional and modern
uses of natural honey in human diseases: A review. Iranian Journal of Basic
Medical Sciences 16(6): 731-742.
Fanoudi, S., Alavi, M., Hosseini, M. & Sadeghnia, H. 2019. Nigella sativa and thymoquinone
attenuate oxidative stress and cognitive impairment following cerebral
hypoperfusion in rats. Metabolic Brain Disease 34(4): 1001-1010.
Feeney, C., Frantseva, M., Carlen, P., Pennefather, P.,
Shulyakova, N., Shniffer, C. & Mills, L. 2008. Vulnerability of glial cells
to hydrogen peroxide in cultured hippocampal slices. Brain Research 1198: 1-15.
Folmer, V., Pedroso, N., Matias, A., Lopes, S., Antunes, F.,
Cyrne, L. & Marinho, H. 2008. H2O2 induces rapid
biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochimica
et Biophysica Acta (BBA) - Biomembranes 1778(4): 1141-1147.
Galluzzi, L., Bravo-San Pedro, J., Vitale, I., Aaronson, S.,
Abrams, J., Adam, D., Alnemri, E., Altucci, L., Andrews, D.,
Annicchiarico-Petruzzelli, M., Baehrecke, E., Bazan, N., Bertrand, M., Bianchi,
K., Blagosklonny, M., Blomgren, K., Borner, C., Bredesen, D., Brenner, C.,
Campanella, M., Candi, E., Cecconi, F., Chan, F., Chandel, N., Cheng, E.,
Chipuk, J., Cidlowski, J., Ciechanover, A., Dawson, T., Dawson, V., De
Laurenzi, V., De Maria, R., Debatin, K., Di Daniele, N., Dixit, V., Dynlacht,
B., El-Deiry, W., Fimia, G., Flavell, R., Fulda, S., Garrido, C., Gougeon, M.,
Green, D., Gronemeyer, H., Hajnoczky, G., Hardwick, J., Hengartner, M., Ichijo,
H., Joseph, B., Jost, P., Kaufmann, T., Kepp, O., Klionsky, D., Knight, R.,
Kumar, S., Lemasters, J., Levine, B., Linkermann, A., Lipton, S., Lockshin, R.,
López-Otín, C., Lugli, E., Madeo, F., Malorni, W., Marine, J., Martin, S.,
Martinou, J., Medema, J., Meier, P., Melino, S., Mizushima, N., Moll, U.,
Muñoz-Pinedo, C., Nuñez, G., Oberst, A., Panaretakis, T., Penninger, J., Peter,
M., Piacentini, M., Pinton, P., Prehn, J., Puthalakath, H., Rabinovich, G.,
Ravichandran, K., Rizzuto, R., Rodrigues, C., Rubinsztein, D., Rudel, T., Shi,
Y., Simon, H., Stockwell, B., Szabadkai, G., Tait, S., Tang, H., Tavernarakis, N.,
Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger, A., Wagner, E.,
Walczak, H., White, E., Wood, W., Yuan, J., Zakeri, Z., Zhivotovsky, B.,
Melino, G. & Kroemer, G. 2014. Essential versus accessory aspects of cell
death: Recommendations of the NCCD 2015. Cell Death & Differentiation 22(1): 73.
Ganie, S., Zargar, B., Masood, A. & Zargar, M. 2012. Effect of
long dose exposure of Podophyllum
hexandrum methanol extract on antioxidant defense system and body and organ
weight changes of albino rats. Asian Pacific Journal of Tropical Biomedicine 2(3): S1600-S1605.
Gille, J. & Joenje, H. 1992a. Cell culture models for
oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutation Research/DNAging 275(3-6): 405-414.
Gille, J. & Joenje, H. 1992b. Cell culture models for
oxidative stress: Superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutation Research/DNAging 275(3-6): 405-414.
Grishagin, I.V. 2015. Automatic cell counting with ImageJ. Analytical
Biochemistry 473: 63-65.
Gülden, M., Jess, A., Kammann, J., Maser, E. & Seibert, H.
2010. Cytotoxic potency of H2O2 in cell cultures: Impact
of cell concentration and exposure time. Free Radical Biology and Medicine 49(8): 1298-1305.
Häcker, G. 2000. The morphology of apoptosis. Cell and Tissue
Research 301(1): 5-17.
Haron, A.S., Sharifah, S.S.A., Latifah, S.Y., Rohaina, A.R., Yong,
S.O., Fatin, H.Z.A. & Henna, R.A. 2018. Cytotoxic effect of
thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) on liver cancer cell
integrated with hepatitis b genome, Hep3b. Evidence-Based Complementary and
Alternative Medicine 2018: 1549805.
Hu, W. & Lu, Q. 2014. Impact of oxidative stress on the
cytoskeleton of pancreatic epithelial cells. Experimental and Therapeutic
Medicine 8(5): 1438-1442.
Hu, X., Ma, J., Vikash, V., Li, J., Wu, D., Liu, Y., Zhang, J.
& Dong, W. 2017. Thymoquinone augments cisplatin-induced apoptosis on
oesophageal carcinoma through mitigating the activation of JAK2/STAT3 pathway. Digestive
Diseases and Sciences 63(1): 126-134.
Ichwan, S. 2014. Apoptotic activities of thymoquinone, an active
ingredient of black seed (Nigella sativa),
in cervical cancer cell lines. The Chinese Journal of Physiology 57(5):
249-255.
Isaev, N.K., Chetverikov, N.S., Stelmashook, E.V., Genrikhs, E.E.,
Khaspekov, L.G. & Illarioshkin, S.N. 2020. Thymoquinone as a potential
neuroprotector in acute and chronic forms of cerebral pathology. Biochemistry (Moscow) 85(2):
167-176.
Jehan, S., Zhong, C., Li, G., Zulqarnain Bakhtiar, S., Li, D.
& Sui, G. 2020. Thymoquinone selectively induces hepatocellular carcinoma
cell apoptosis in synergism with clinical therapeutics and dependence of p53
status. Frontiers in Pharmacology 11: 555283.
Kabir, N., Schaefer, A., Nakhost, A., Sossin, W. & Forscher, P.
2001. Protein Kinase C activation promotes microtubule advance in neuronal
growth cones by increasing average microtubule growth lifetimes. Journal of
Cell Biology 152(5): 1033-1044.
Kalamegam, G., Saadiah, M.A., Afnan, O.B., Etimad, A.A., Mamdouh,
A.G., Mohammed, M.A., Farid, A., Muhammed, A.E. & Peter, N.P. 2020. In vitro evaluation of the
anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related
pathways in age-related degenerative diseases. Frontiers in Cell and
Developmental Biology 8: 646.
Kanner, J. 2020. Polyphenols by generating H2O2,
affect cell redox signaling, inhibit Ptps and activate Nrf2 axis for adaptation
and cell surviving: in vitro, in vivo and human health. Antioxidants 9 (9): 797.
Kanter, M., Coskun, O., Korkmaz, A. & Oter, S. 2004. Effects
of Nigella sativa on oxidative stress
and beta-cell damage in streptozotocin-induced diabetic rats. The Anatomical
Record 279A(1): 685-691.
Kawamori, D., Kajimoto, Y., Kaneto, H., Umayahara, Y., Fujitani,
Y., Miyatsuka, T., Watada, H., Leibiger, I., Yamasaki, Y. & Hori, M. 2003.
Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic
transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase. Diabetes 52(12): 2896-2904.
Khan, M.A., Chen, H.C., Tania, M. & Zhang, D.Z. 2011.
Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary and Alternative
Medicines 8(5 Suppl): 226-232.
Kocsis, Á., Pasztorek, M., Rossmanith, E., Djinovic, Z., Mayr, T.,
Spitz, S., Zirath, H., Ertl, P. & Fischer, M.B. 2021. Dependence of
mitochondrial function on the filamentous actin cytoskeleton in cultured
mesenchymal stem cells treated with cytochalasin B. Journal of Bioscience and Bioengineering 132(3): 310-320.
Kodavanti, P.R., Royland, J.E., Richards, J.E., Besas, J. &
Macphail, R.C. 2011. Toluene effects on oxidative stress in brain regions of
young-adult, middle-age, and senescent brown Norway rats. Toxicology and
Applied Pharmacology 256(3): 386-398.
Korak, T., Emel, E. & Ali, S. 2020. Nigella sativa and Cancer: A review focusing on breast cancer,
inhibition of metastasis and enhancement of natural killer cell cytotoxicity. Current
Pharmaceutical Biotechnology 21(12): 1176-1185.
Kuang, F., Liu, J., Tang, D. & Kang, R. 2020. Oxidative damage
and antioxidant defense in ferroptosis. Frontiers in Cell and Developmental
Biology 8: 586578.
Leong, X.F., Mohd, R.M. & Kamsiah, J. 2013. Nigella sativa and its protective role
in oxidative stress and hypertension. Evidence-Based Complementary and
Alternative Medicine 2013: 253479.
Li, Y.J. & Chen, Z. 2022. Cell-based therapies for rheumatoid
arthritis: Opportunities and challenges. Therapeutic Advances in
Musculoskeletal Disease 14: 1759720X221100294.
Liu, T., Li, S., Yubin, Z., Yonglin, W. & Jiang, Z. 2021.
Imbalanced GSH/ROS and sequential cell death. Journal of Biochemical and
Molecular Toxicology 36: e22942.
Long, L.H., Clement, M.V. & Halliwell, B. 2000. Artifacts in
cell culture: Rapid generation of hydrogen peroxide on addition of
(−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin,
and quercetin to commonly used cell culture media. Biochemical and
Biophysical Research Communications 273(1): 50-53.
Mahmoud, Y.K. & Abdelrazek, H.M.A. 2019. Cancer: Thymoquinone
antioxidant/pro-oxidant effect as potential anticancer remedy. Biomedicine
& Pharmacotherapy 115: 108783.
Mansour, M.A., Mahmoud, N.N., Aiman, S.E. & Abdullah, M.A.
2002. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation
and DT-diaphorase in different tissues of mice: A possible mechanism of action. Cell Biochemistry and Function 20(2): 143-151.
Maraldi, T., Cristina, A., Cecilia, P. & Silvana, H. 2021.
NADPH oxidases: Redox regulators of stem cell fate and function. Antioxidants 10(6): 973.
Marnett, L.J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21(3): 361-370.
Mattia, C.J., Ali, S.F. & Bondy, S.C. 1993. Toluene-induced
oxidative stress in several brain regions and other organs. Molecular and
Chemical Neuropathology 18(3): 313-328.
Mohammadi, S., Abolfazl, B., Alireza, D., Jaleh, B. &
Yadollah, O. 2021. Astaxanthin protects mesenchymal stem cells from oxidative
stress by direct scavenging of free radicals and modulation of cell signalling. Chemico-Biological Interactions 333: 109324.
Mondal, S., Bandyopadhyay, S., Ghosh, M.K., Mukhopadhyay, S., Roy,
S. & Mandal, C. 2012. Natural products: Promising resources for cancer drug
discovery. Anti-Cancer Agents in Medicinal Chemistry 12(1): 49-75.
Mu, X., Tseng, C., Hambright, W.S., Matre, P., Lin, C.Y., Chanda,
P., Chen, W., Gu, J., Ravuri, S., Cui, Y., Zhong, L., Cooke, J.P.,
Niedernhofer, L.J., Robbins, P.D. & Huard, J. 2020. Cytoskeleton stiffness
regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome. Aging Cell 19(8): e13152.
Negi, P., Sharma, I., Hemrajani, C., Rathore, C., Bisht, A., Raza,
K. & Katare, O.P. 2019. Thymoquinone-loaded lipid vesicles: A promising
nanomedicine for psoriasis. BMC Complementary Medicine and Therapies 19(1): 334.
Ng, W.K., Latifah, S.Y. & Maznah, I. 2011. Thymoquinone from Nigella sativa was more potent than
cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of
Bcl-2 protein. Toxicology in Vitro 25(7): 1392-1398.
Rahmani, A.H., Mohammad, A.A., Masood, A.K. & Salah, M.A.
2014. Therapeutic implications of black seed and its constituent thymoquinone
in the prevention of cancer through inactivation and activation of molecular
pathways. Evidence-Based Complementary and Alternative Medicine 2014:
724658.
Ray, P.D., Huang, B.W. & Tsuji, Y. 2012. Reactive oxygen
species (ROS) homeostasis and redox regulation in cellular signalling. Cell
Signal 24(5): 981-990.
Robinson, M.M., Bergen, K.S., Emily, R.B., Sarah, E.E., Harrison,
D.S., Maria, C.F. & Sean, A.N. 2019. Robust intrinsic differences in
mitochondrial respiration and H2O2 emission between L6
and C2C12 cells. American Journal of Physiology-Cell Physiology 317(2):
C339-C347.
Sahak, M.K.A., Kabir, N., Abbas, G., Draman, S., Hashim, N.H.
& Hasan Adli, D.S. 2016. The role of Nigella
sativa and its active constituents in learning and memory. Evidence-Based
Complementary and Alternative Medicine 2016: 6075679.
Samarghandian, S., Mohsen, A.N. & Tahereh, F. 2019.
Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma
cells. Journal of Cellular Physiology 234(7): 10421-10431.
Sankaranarayanan, C. & Pari, L. 2011. Thymoquinone ameliorates
chemical induced oxidative stress and β-cell damage in experimental
hyperglycemic rats. Chemico-Biological Interactions 190: 148-54.
Sassoli, C., Pierucci, F., Tani, A., Frati, A., Chellini, F.,
Matteini, F., Vestri, A., Anderloni, G., Nosi, D., Zecchi-Orlandini, S. &
Meacci, E. 2018. Sphingosine 1-Phosphate Receptor 1 is required for MMP-2
function in bone marrow mesenchymal stromal cells: Implications for
cytoskeleton assembly and proliferation. Stem Cells International 2018:
5034679.
Schaefer, A.W., Nurul, K. & Forscher, P. 2002. Filopodia and
actin arcs guide the assembly and transport of two populations of microtubules
with unique dynamic parameters in neuronal growth cones. The Journal of Cell
Biology 158(1): 139-152.
Schneider, C., Rasband, W. & Eliceiri, K. 2012. NIH image to
ImageJ: 25 years of image analysis. Nature Methods 9(7): 671-675.
Shanmugam, M., Ahn, K., Hsu, A., Woo, C., Yuan, Y., Tan, K.,
Chinnathambi, A., Alahmadi, T., Alharbi, S., Koh, A., Arfuso, F., Huang, R.,
Lim, L., Sethi, G. & Kumar, A. 2018. Thymoquinone inhibits bone metastasis
of breast cancer cells through abrogation of the CXCR4 signaling axis. Frontiers
in Pharmacology 9: 1294.
Sharifi-Rad, M., Nanjangud, V.A.K., Paolo, Z., Elena, M.V.,
Luciana, D., Elisa, P., Jovana, R., Tsouh Fokou, P.V., Azzini, E., Peluso, I.,
Prakash, M.A., Nigam, M., El Rayess, Y., Beyrouthy, M.E., Polito, L., Iriti,
M., Martins, N., Martorell, M., Docea, A.O., Setzer, W. N., Calina, D., Cho,
W.C. & Sharifi-Rad, J. 2020. Lifestyle, oxidative stress, and antioxidants:
Back and forth in the pathophysiology of chronic diseases. Frontiers in
Physiology 11: 694.
Sies, H. 2019. Chapter 13 - Oxidative stress: Eustress and
distress in redox homeostasis. In Stress:
Physiology, Biochemistry, and Pathology, edited by Fink, G. Massachusetts: Academic Press. pp. 153-163.
Smajilagić, A., Mufida, A., Amira, R., Selma, F. & Alena,
L. 2013. Rat bone marrow stem cells isolation and culture as a bone formative
experimental system. Bosnian Journal of Basic Medical Sciences 13(1):
27-30.
Stadtman, E.R. & Levine, R.L. 2000. Protein oxidation. Annals
of the New York Academy of Sciences 899: 191-208.
Szanto, I., Marc, P. & Maria, M. 2019. H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: Focus on NADPH
oxidases. Antioxidants 8(5): 126.
Uttara, B., Singh, A.V., Zamboni, P. & Mahajan, R.T. 2009.
Oxidative stress and neurodegenerative diseases: A review of upstream and
downstream antioxidant therapeutic options. Current Neuropharmacology 7(1): 65-74.
Vermes, I., Haanen, C., Steffens-Nakken, H. &
Reutelingsperger, C. 1995. A novel assay for apoptosis. Flow cytometric
detection of phosphatidylserine expression on early apoptotic cells using
fluorescein labelled Annexin V. Journal of Immunological Methods 184(1):
39-51.
Vijayamalini, M. & Manoharan, S. 2004. Lipid peroxidation,
vitamins C, E and reduced glutathione levels in patients with pulmonary
tuberculosis. Cell Biochemistry and Function 22(1): 19-22.
Wei, H., Zongwei, L., Shengshou, H., Xi, C. & Xiangfeng, C.
2010. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns
both endoplasmic reticulum stress and mitochondrial death pathway through
regulation of caspases, p38 and JNK. Journal of Cellular Biochemistry 111(4): 967-978.
Zakaria, A.F., Latifah, S., Wan, K., Khong, K.C., Ng, Y., Foong,
J.N., Gopalsamy, B., Ng, W.K., How, C.W., Ong, Y.S., Abdullah, R. & Aziz,
M.Y. 2020. Pharmacokinetics and biodistribution of thymoquinone-loaded
nanostructured lipid carrier after oral and intravenous administration into
rats. International Journal of Nanomedicine 15: 7703-7717.
Zubair, H., Khan, H.Y., Sohail, A., Azim, S., Ullah, M.F., Ahmad,
A., Sarkar, F.H. & Hadi, S.M. 2013. Redox cycling of endogenous copper by
thymoquinone leads to ROS-mediated DNA breakage and consequent cell death:
Putative anticancer mechanism of antioxidants. Cell Death and Disease 4(6): e660.
*Corresponding
author; email: nurul.kabir@um.edu.my
|