Sains Malaysiana 52(1)(2023): 47-56

http://doi.org/10.17576/jsm-2023-5201-04

 

Hyperglycaemia Attenuated C2C12 Myoblast Proliferation and Induced Skeletal Muscle Atrophy via Modulating Myogenic Regulatory Factors Genes Expression in Diabetic Rats

(Hiperglisemia Dilemahkan C2C12 Pembiakan Mioblas dan Atrofi Otot Rangka Terinduksi melalui Modulasi Faktor Kawalaturan Miogenesis Ekspresi Gen dalam Tikus Diabetis)

 

CHITTIPONG TIPBUNJONG1,2,*, WIPAPAN KHIMMAKTONG1, CHUMPOL PHOLPRAMOOL3 & PIYAPORN SURINLERT4

 

1Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand

2Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand

3Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand 

4Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand 

 

Received: 18 January 2022/Accepted: 3 November 2022

 

Abstract

Diabetes mellitus is characterised by high blood glucose level termed hyperglycaemia (HG). It has been reported to affect skeletal muscle by inducing skeletal muscle atrophy and skeletal muscle protein degradation leading to impairment of muscle function. This study aimed to investigate the effects of HG on the expression of myogenic regulatory factor genes in muscle progenitor cells and in skeletal muscle. The number of C2C12 myoblasts cultured in HG condition was significantly decreased compared to control in dose and time dependent manner. In addition, the number of Ki-67 positive nuclei was significantly decreased after treatment under HG condition. Real time PCR showed significant suppression of MyoD and myogenin, while Myf5 gene expression was significantly enhanced, compared to control. Furthermore, histological examinations of muscle fibres showed atrophy of tibialis anterior (TA) muscle from diabetic rats. The frequency of distribution of muscle fibre cross-sectional area (MCA) in diabetic rats was shifted leftward from that of normal control rats. In contrast, the MyoD and myogenin expression in TA muscle of diabetic rats were significantly increased compared to normal control rats. This study provides novel knowledge on the changing myogenic regulatory factor gene expression in hyperglycaemic condition, both in vitro and in vivo, leading to skeletal muscle atrophy.

 

Keywords: Atrophy; diabetes; myoblast; myogenesis; skeletal muscle

 

Abstrak

Diabetes mellitus dicirikan oleh tahap glukosa darah yang tinggi dipanggil hiperglisemia (HG). Ia telah dilaporkan menjejaskan otot rangka dengan mengaruh atrofi otot rangka dan degradasi protein otot rangka yang membawa kepada kemerosotan fungsi otot. Kajian ini bertujuan untuk mengkaji kesan HG ke atas pengekspresan gen faktor pengawalaturan miogenik dalam sel progenitor otot dan dalam otot rangka. Bilangan mioblas C2C12 yang dibiakkan dalam keadaan HG berkurangan dengan ketara berbanding dengan kawalan yang bergantung kepada dos dan masa. Di samping itu, bilangan nukleus positif Ki-67 berkurangan dengan ketara selepas rawatan dalam keadaan HG. PCR masa nyata menunjukkan penindasan signifikan MyoD dan miogenin, manakala pengekspresan gen Myf5 meningkat dengan signifikan, berbanding kawalan. Tambahan pula, pemeriksaan histologi gentian otot mendedahkan atrofi otot tibialis anterior (TA) bagi tikus diabetes. Kekerapan taburan kawasan keratan rentas gentian otot (MCA) pada tikus diabetes dianjak ke kiri berbanding tikus kawalan normal. Sebaliknya, pengekspresan MyoD dan miogenin dalam otot TA tikus diabetes meningkat dengan ketara berbanding tikus kawalan normal. Kajian ini memberikan pengetahuan baharu tentang perubahan pengekspresan gen faktor pengawalaturan miogenik dalam keadaan hiperglisemik yang membawa kepada atrofi otot rangka bagi kedua-dua keadaan in vitro dan in vivo.

 

Kata kunci: Atrofi; diabetes; mioblas; miogenesis; otot rangka

 

REFERENCES

Acharya, S., Peters, A., Norton, A., Murdoch, G. & Hill, R. 2013. Change in Nox4 expression is accompanied by changes in myogenic marker expression in differentiating C2C12 myoblasts. Pflügers Archiv-European Journal of Physiology 465(8): 1181-1196.

Aguiar, A.F., Vechetti-Junior, I.J., De Souza, R.A., Castan, E.P., Milanezi-Aguiar, R.C., Padovani, C.R., Carvalho, R.F. & Silva, M.D.P. 2013. Myogenin, MyoD and IGF-I regulate muscle mass but not fibre-type conversion during resistance training in rats. International Journal of Sports Medicine 34(4): 293-301.

Always, S.E. & Lowe, D.A. 2001. The effects of age and hindlimb suspension on the levels of expression of the myogenic regulatory factors MyoD and myogenin in rat fast and slow skeletal muscles. Experimental Physiology 86(4): 509-517.

Arnold, R., Kwai, N.C. & Krishnan, A.V. 2013. Mechanisms of axonal dysfunction in diabetic and uraemic neuropathies. Clinical Neurophysiology 124(11): 2079-2090.

Asakura, A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras, B.A., Christ, A.J., Verma, M., Vineretsky, K.A. & Rudnicki, M.A. 2007. Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proceedings of the National Academy of Sciences 104(42): 16552-16557.

Asfour, H.A., Allouh, M.Z. & Said, R.S. 2018. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Experimental Biology and Medicine 243(2): 118-128.

Baptista, F.I., Pinheiro, H., Gomes, C.A. & Ambrósio, A.F. 2019. Impairment of axonal transport in diabetes: Focus on the putative mechanisms underlying peripheral and central neuropathies. Molecular Neurobiology 56(3): 2202-2210.

Bravard, A., Bonnard, C., Durand, A., Chauvin, M.A., Favier, R., Vidal, H. & Rieusset, J. 2011. Inhibition of xanthine oxidase reduces hyperglycaemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. American Journal of Physiology-Endocrinology and Metabolism 300(3): 581-591.

Buranasin, P., Mizutani, K., Iwasaki, K., Pawaputanon Na Mahasarakham, C., Kido, D., Takeda, K. & Izumi, Y. 2018. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS ONE 13(8): e0201855.

Cai, Y., Zhan, H., Weng, W., Wang, Y., Han, P., Yu, X., Shao, M. & Sun, H. 2021. Niclosamide ethanolamine ameliorates diabetes-related muscle wasting by inhibiting autophagy. Skeletal Muscle 11(1): 15.

Caldow, M.K., Thomas, E.E., Dale, M.J., Tomkinson, G.R., Buckley, J.D. & Cameron‐Smith, D. 2015. Early myogenic responses to acute exercise before and after resistance training in young men. Physiological Reports 3(9): e12511.

Culbreth, M. & Rand, M.D. 2020. Methylmercury modifies temporally expressed myogenic regulatory factors to inhibit myoblast differentiation. Toxicology in Vitro 63: 104717.

Dedkov, E.I., Kostrominova, T.Y., Borisov, A.B. & Carlson, B.M. 2003. MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell and Tissue Research 311(3): 401-416.

Di Filippo, E.S., Mancinelli, R., Pietrangelo, T., La Rovere, R.M.L., Quattrocelli, M., Sampaolesi, M. & Fulle, S. 2016. Myomir dysregulation and reactive oxygen species in aged human satellite cells. Biochemical and Biophysical Research Communications 473(2): 462-470.

Fatrai, S., Elghazi, L., Balcazar, N., Cras-Méneur, C., Krits, I., Kiyokawa, H. & Bernal-Mizrachi, E. 2006. Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55(2): 318-325.

Furuichi, Y., Kawabata, Y., Aoki, M., Mita, Y., Fujii, N.L. & Manabe, Y. 2021. Excess glucose impedes the proliferation of skeletal muscle satellite cells under adherent culture conditions. Frontiers in Cell and Developmental Biology 9: 640399.

Ganassi, M., Badodi, S., Wanders, K., Zammit, P.S. & Hughes, S.M. 2020. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 9: e60445.

Han, J., Zhang, L., Guo, H., Wysham, W.Z., Roque, D.R., Willson, A.K., Sheng, X., Zhou, C. & Bae-Jump, V.L. 2015. Glucose promotes cell proliferation, glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and MAPK signalling. Gynecologic Oncology 138(3): 668-675.

Hirai, H., Verma, M., Watanabe, S., Tastad, C., Asakura, Y. & Asakura, A. 2010. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. Journal of Cell Biology 191(2): 347-365.

Hirata, Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi, Y., Imamura, M., Takeda, S., Hosooka, T. & Ogawa, W. 2019. Hyperglycaemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4(4): e124952.

Horsophonphong, S., Kitkumthorn, N., Sritanaudomchai, H., Nakornchai, S. & Surarit, R. 2020. High glucose affects proliferation, reactive oxygen species and mineralization of human dental pulp cells. Brazilian Dental Journal 31: 298-303.

Hou, Y., Zhou, M., Xie, J., Chao, P., Feng, Q. & Wu, J. 2017. High glucose levels promote the proliferation of breast cancer cells through GTPases. Breast Cancer: Targets and Therapy 9: 429-436.

Huang, Z., Fang, Q., Ma, W., Zhang, Q., Qiu, J., Gu, X., Yang, H. & Sun, H. 2019. Skeletal muscle atrophy was alleviated by salidroside through suppressing oxidative stress and inflammation during denervation. Frontiers in Pharmacology 10: 997.

Ishibashi, J., Perry, R.L., Asakura, A. & Rudnicki, M.A. 2005. MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. Journal of Cell Biology 171(3): 471-482.

Ito, M., Makino, N., Matsuda, A., Ikeda, Y., Kakizaki, Y., Saito, Y., Ueno, Y. & Kawata, S. 2017. High glucose accelerates cell proliferation and increases the secretion and mRNA expression of osteopontin in human pancreatic duct epithelial cells. International Journal of Molecular Sciences 18(4): 807.

Krivickas, L.S., Dorer, D.J., Ochala, J. & Frontera, W.R. 2011. Relationship between force and size in human single muscle fibres. Experimental Physiology 96(5): 539-547.

Macpherson, P.C., Wang, X. & Goldman, D. 2011. Myogenin regulates denervation‐dependent muscle atrophy in mouse soleus muscle. Journal of Cellular Biochemistry 112(8): 2149-2159.

Matsumoto, N., Omagari, D., Ushikoshi-Nakayama, R., Yamazaki, T., Inoue, H. & Saito, I. 2021. Hyperglycaemia induces generation of reactive oxygen species and accelerates apoptotic cell death in salivary gland cells. Pathobiology 88: 234-241.

Muller, K.A., Ryals, J.M., Feldman, E.L. & Wright, D.E. 2008. Abnormal muscle spindle innervation and large-fibre neuropathy in diabetic mice. Diabetes 57(6): 1693-1701.

Panda, A.C., Abdelmohsen, K., Martindale, J.L., Di Germanio, C., Yang, X., Grammatikakis, I., Noh, J.H., Zhang, Y., Lehrmann, E., Dudekula, D.B., De, S., Becker, K.G., White, E.J., Wilson, G.M., de Cabo, R. & Gorospe, M. 2016. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Research 44(5): 2393-2408.

Parasoglou, P., Rao, S. & Slade, J.M. 2017. Declining skeletal muscle function in diabetic peripheral neuropathy. Clinical Therapeutics 39(6): 1085-1103.

Pizarro, J.G., Folch, J., Vazquez De la Torre, A., Verdaguer, E., Junyent, F., Jordán, J., Pallàs, M. & Camins, A. 2009. Oxidative stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell line. Free Radical Research 43(10): 985-994.

Powers, S.K., Smuder, A.J. & Criswell, D.S. 2011. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxidants & Redox Signalling 15(9): 2519-2528.

Poy, M.N., Spranger, M. & Stoffel, M. 2007. microRNAs and the regulation of glucose and lipid metabolism. Diabetes, Obesity and Metabolism 9(Suppl 2): 67-73.

Qiu, D., Zhang, L., Zhan, J., Yang, Q., Xiong, H., Hu, W., Ji, Q. & Huang, J. 2020. Hyperglycaemia decreases epithelial cell proliferation and attenuates neutrophil activity by reducing ICAM-1 and LFA-1 expression levels. Frontiers in Genetics 11: 616988.

Quinn, M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V. & Millay, D.P. 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nature Communications 8(1): 15665.

Relaix, F., Bencze, M., Borok, M.J., Der Vartanian, A., Gattazzo, F., Mademtzoglou, D., Perez-Diaz, S., Prola, A., Reyes-Fernandez, P.C., Rotini, A. & Taglietti, V. 2021. Perspectives on skeletal muscle stem cells. Nature Communications 12: 692. 

Robinson, M.M., Dasari, S., Karakelides, H., Bergen 3rd., H.R. & Nair, K.S. 2016. Release of skeletal muscle peptide fragments identifies individual proteins degraded during insulin deprivation in type 1 diabetic humans and mice. American Journal of Physiology - Endocrinology and Metabolism 311(3): E628-E637.

Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24(10): 453-462.

Shahini, A., Choudhury, D., Asmani, M., Zhao, R., Lei, P. & Andreadis, S.T. 2018. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Research 26: 55-66.

Shintaku, J., Peterson, J.M., Talbert, E.E., Gu, J.M., Ladner, K.J., Williams, D.R., Mousavi, K., Wang, R., Sartorelli, V. & Guttridge, D.C. 2016. MyoD regulates skeletal muscle oxidative metabolism cooperatively with alternative NF-κB. Cell Reports 17(2): 514-526.

Shirakawa, T., Toyono, T., Inoue, A., Matsubara, T., Kawamoto, T. & Kokabu, S. 2022. Factors regulating or regulated by myogenic regulatory factors in skeletal muscle stem cells. Cells 11(9): 1493.

Sosa, P., Alcalde-Estévez, E., Asenjo-Bueno, A., Plaza, P., Carrillo-López, N., Olmos, G., López-Ongil, S. & Ruiz-Torres, M.P. 2021. Aging-related hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle 12(5): 1266-1279.

Spassov, A., Gredes, T., Gedrange, T., Lucke, S., Pavlovic, D. & Kunert-Keil, C. 2011. The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (mdx) mice. Cellular & Molecular Biology Letters 16(2): 214-225.

Surinlert, P., Kongthong, N., Watthanard, M., Sae-Lao, T., Sookbangnop, P., Pholpramool, C. & Tipbunjong, C. 2020. Styrene oxide caused cell cycle arrest and abolished myogenic differentiation of C2C12 myoblasts. Journal of Toxicology 2020: 1807126.

Surinlert, P., Thitiphatphuvanon, T., Khimmaktong, W., Pholpramool, C. & Tipbunjong, C. 2021. Hyperglycaemia induced C2C12 myoblast cell cycle arrest and skeletal muscle atrophy by modulating sirtuins gene expression in rats. Polish Journal of Veterinary Sciences 24(4): 563-572.

Varma, S., Lal, B.K., Zheng, R., Breslin, J.W., Saito, S., Pappas, P.J., Hobson 2nd., R.W. & Durán, W.N. 2005. Hyperglycemia alters PI3k and Akt signaling and leads to endothelial cell proliferative dysfunction. American Journal of Physiology - Heart and Circulatory Physiology 289(4): 1744-1751.

Wüst, S., Dröse, S., Heidler, J., Wittig, I., Klockner, I., Franko, A., Bonke, E., Günther, S., Gärtner, U., Boettger, T. & Braun, T. 2018. Metabolic maturation during muscle stem cell differentiation is achieved by miR-1/133a-mediated inhibition of the Dlk1-Dio3 mega gene cluster. Cell Metabolism 27(5): 1026-1039.

Zacarías-Flores, M., Sánchez-Rodríguez, M.A., García-Anaya, O.D., Correa-Muñoz, E. & Mendoza-Núñez, V.M. 2018. Relationship between oxidative stress and muscle mass loss in early postmenopause: An exploratory study. Endocrinología, Diabetes y Nutrición 65(6): 328-334.

Zammit, P.S. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars in Cell & Developmental Biology 72: 19-32.

Zheng, Y., Zhao, C., Zhang, N., Kang, W., Lu, R., Wu, H., Geng, Y., Zhao, Y. & Xu, X. 2018. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells. Molecular Medicine Reports 17: 5635-5641.

 

*Corresponding author; email: chittipong.t@psu.ac.th

 

 

 

previous