Sains Malaysiana
52(1)(2023): 47-56
http://doi.org/10.17576/jsm-2023-5201-04
Hyperglycaemia Attenuated C2C12
Myoblast Proliferation and Induced Skeletal Muscle Atrophy via Modulating
Myogenic Regulatory Factors Genes Expression in Diabetic Rats
(Hiperglisemia
Dilemahkan C2C12 Pembiakan Mioblas dan Atrofi Otot Rangka Terinduksi melalui
Modulasi Faktor Kawalaturan Miogenesis Ekspresi Gen dalam Tikus Diabetis)
CHITTIPONG TIPBUNJONG1,2,*, WIPAPAN KHIMMAKTONG1, CHUMPOL PHOLPRAMOOL3 & PIYAPORN SURINLERT4
1Division of Health and Applied Sciences,
Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
2Gut Biology and Microbiota Research Unit,
Prince of Songkla University, Songkhla
90110, Thailand
3Department of Physiology, Faculty of
Science, Mahidol University, Bangkok 10400, Thailand
4Chulabhorn International College of
Medicine, Thammasat University, Pathum Thani 12120, Thailand
Received:
18 January 2022/Accepted: 3 November 2022
Abstract
Diabetes
mellitus is characterised by high blood glucose level termed hyperglycaemia
(HG). It has been reported to affect skeletal muscle by inducing skeletal muscle atrophy and skeletal muscle
protein degradation leading to impairment of muscle function. This
study aimed to investigate the effects of HG on the expression of myogenic
regulatory factor genes in muscle progenitor cells and in skeletal muscle. The
number of C2C12 myoblasts cultured in HG condition was significantly decreased
compared to control in dose and time dependent manner. In addition, the number
of Ki-67 positive nuclei was significantly decreased after treatment under HG
condition. Real time PCR showed significant suppression of MyoD and myogenin,
while Myf5 gene expression was significantly enhanced, compared to control.
Furthermore, histological examinations of muscle fibres showed atrophy of
tibialis anterior (TA) muscle from diabetic rats. The frequency of distribution
of muscle fibre cross-sectional area (MCA) in diabetic rats was shifted
leftward from that of normal control rats. In contrast, the MyoD and myogenin
expression in TA muscle of diabetic rats were significantly increased compared
to normal control rats. This study provides
novel knowledge on the changing myogenic regulatory factor gene expression in
hyperglycaemic condition, both in vitro and in vivo, leading to
skeletal muscle atrophy.
Keywords: Atrophy; diabetes; myoblast;
myogenesis; skeletal muscle
Abstrak
Diabetes mellitus dicirikan
oleh tahap glukosa darah yang tinggi dipanggil hiperglisemia (HG). Ia telah
dilaporkan menjejaskan otot rangka dengan mengaruh atrofi otot rangka dan
degradasi protein otot rangka yang membawa kepada kemerosotan fungsi otot.
Kajian ini bertujuan untuk mengkaji kesan HG ke atas pengekspresan gen faktor
pengawalaturan miogenik dalam sel progenitor otot dan dalam otot rangka.
Bilangan mioblas C2C12 yang dibiakkan dalam keadaan HG berkurangan dengan
ketara berbanding dengan kawalan yang bergantung kepada dos dan masa. Di
samping itu, bilangan nukleus positif Ki-67 berkurangan dengan ketara selepas
rawatan dalam keadaan HG. PCR masa nyata menunjukkan penindasan signifikan MyoD
dan miogenin, manakala pengekspresan gen Myf5 meningkat dengan signifikan,
berbanding kawalan. Tambahan pula, pemeriksaan histologi gentian otot
mendedahkan atrofi otot tibialis anterior (TA) bagi tikus diabetes. Kekerapan
taburan kawasan keratan rentas gentian otot (MCA) pada tikus diabetes dianjak
ke kiri berbanding tikus kawalan normal. Sebaliknya, pengekspresan MyoD dan
miogenin dalam otot TA tikus diabetes meningkat dengan ketara berbanding tikus
kawalan normal. Kajian ini memberikan pengetahuan baharu tentang perubahan
pengekspresan gen faktor pengawalaturan miogenik dalam keadaan hiperglisemik
yang membawa kepada atrofi otot rangka bagi kedua-dua keadaan in vitro dan in vivo.
Kata kunci: Atrofi; diabetes;
mioblas; miogenesis; otot rangka
REFERENCES
Acharya,
S., Peters, A., Norton, A., Murdoch, G. & Hill, R. 2013. Change in Nox4
expression is accompanied by changes in myogenic marker expression in
differentiating C2C12 myoblasts. Pflügers Archiv-European Journal of
Physiology 465(8): 1181-1196.
Aguiar,
A.F., Vechetti-Junior, I.J., De Souza, R.A., Castan, E.P., Milanezi-Aguiar,
R.C., Padovani, C.R., Carvalho, R.F. & Silva, M.D.P. 2013. Myogenin, MyoD
and IGF-I regulate muscle mass but not fibre-type conversion during resistance
training in rats. International Journal of Sports Medicine 34(4):
293-301.
Always,
S.E. & Lowe, D.A. 2001. The effects of age and hindlimb suspension on the
levels of expression of the myogenic regulatory factors MyoD and myogenin in
rat fast and slow skeletal muscles. Experimental Physiology 86(4):
509-517.
Arnold,
R., Kwai, N.C. & Krishnan, A.V. 2013. Mechanisms of axonal dysfunction in
diabetic and uraemic neuropathies. Clinical Neurophysiology 124(11):
2079-2090.
Asakura,
A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras, B.A., Christ,
A.J., Verma, M., Vineretsky, K.A. & Rudnicki, M.A. 2007. Increased survival
of muscle stem cells lacking the MyoD gene after transplantation into
regenerating skeletal muscle. Proceedings of the National Academy of
Sciences 104(42): 16552-16557.
Asfour,
H.A., Allouh, M.Z. & Said, R.S. 2018. Myogenic regulatory factors: The
orchestrators of myogenesis after 30 years of discovery. Experimental
Biology and Medicine 243(2): 118-128.
Baptista,
F.I., Pinheiro, H., Gomes, C.A. & Ambrósio, A.F. 2019. Impairment of axonal
transport in diabetes: Focus on the putative mechanisms underlying peripheral
and central neuropathies. Molecular Neurobiology 56(3): 2202-2210.
Bravard,
A., Bonnard, C., Durand, A., Chauvin, M.A., Favier, R., Vidal, H. &
Rieusset, J. 2011. Inhibition of xanthine oxidase reduces
hyperglycaemia-induced oxidative stress and improves mitochondrial alterations
in skeletal muscle of diabetic mice. American Journal of
Physiology-Endocrinology and Metabolism 300(3): 581-591.
Buranasin,
P., Mizutani, K., Iwasaki, K., Pawaputanon Na Mahasarakham, C., Kido, D.,
Takeda, K. & Izumi, Y. 2018. High glucose-induced oxidative stress impairs
proliferation and migration of human gingival fibroblasts. PLoS ONE 13(8): e0201855.
Cai,
Y., Zhan, H., Weng, W., Wang, Y., Han, P., Yu, X., Shao, M. & Sun, H. 2021.
Niclosamide ethanolamine ameliorates diabetes-related muscle wasting by
inhibiting autophagy. Skeletal Muscle 11(1): 15.
Caldow,
M.K., Thomas, E.E., Dale, M.J., Tomkinson, G.R., Buckley, J.D. & Cameron‐Smith,
D. 2015. Early myogenic responses to acute exercise before and after resistance
training in young men. Physiological Reports 3(9): e12511.
Culbreth,
M. & Rand, M.D. 2020. Methylmercury modifies temporally expressed myogenic
regulatory factors to inhibit myoblast differentiation. Toxicology in Vitro 63: 104717.
Dedkov,
E.I., Kostrominova, T.Y., Borisov, A.B. & Carlson, B.M. 2003. MyoD and
myogenin protein expression in skeletal muscles of senile rats. Cell and
Tissue Research 311(3): 401-416.
Di
Filippo, E.S., Mancinelli, R., Pietrangelo, T., La Rovere, R.M.L.,
Quattrocelli, M., Sampaolesi, M. & Fulle, S. 2016. Myomir dysregulation and
reactive oxygen species in aged human satellite cells. Biochemical and
Biophysical Research Communications 473(2): 462-470.
Fatrai,
S., Elghazi, L., Balcazar, N., Cras-Méneur, C., Krits, I., Kiyokawa, H. &
Bernal-Mizrachi, E. 2006. Akt induces beta-cell proliferation by regulating
cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55(2): 318-325.
Furuichi,
Y., Kawabata, Y., Aoki, M., Mita, Y., Fujii, N.L. & Manabe, Y. 2021. Excess
glucose impedes the proliferation of skeletal muscle satellite cells under
adherent culture conditions. Frontiers in Cell and Developmental Biology 9: 640399.
Ganassi,
M., Badodi, S., Wanders, K., Zammit, P.S. & Hughes, S.M. 2020. Myogenin is
an essential regulator of adult myofibre growth and muscle stem cell
homeostasis. Elife 9: e60445.
Han,
J., Zhang, L., Guo, H., Wysham, W.Z., Roque, D.R., Willson, A.K., Sheng, X.,
Zhou, C. & Bae-Jump, V.L. 2015. Glucose promotes cell proliferation,
glucose uptake and invasion in endometrial cancer cells via AMPK/mTOR/S6 and
MAPK signalling. Gynecologic Oncology 138(3): 668-675.
Hirai,
H., Verma, M., Watanabe, S., Tastad, C., Asakura, Y. & Asakura, A. 2010.
MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation
of Pax3. Journal of Cell Biology 191(2): 347-365.
Hirata,
Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi,
Y., Imamura, M., Takeda, S., Hosooka, T. & Ogawa, W. 2019. Hyperglycaemia
induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 4(4):
e124952.
Horsophonphong,
S., Kitkumthorn, N., Sritanaudomchai, H., Nakornchai, S. & Surarit, R.
2020. High glucose affects proliferation, reactive oxygen species and
mineralization of human dental pulp cells. Brazilian Dental Journal 31:
298-303.
Hou,
Y., Zhou, M., Xie, J., Chao, P., Feng, Q. & Wu, J. 2017. High glucose levels
promote the proliferation of breast cancer cells through GTPases. Breast
Cancer: Targets and Therapy 9: 429-436.
Huang,
Z., Fang, Q., Ma, W., Zhang, Q., Qiu, J., Gu, X., Yang, H. & Sun, H. 2019.
Skeletal muscle atrophy was alleviated by salidroside through suppressing
oxidative stress and inflammation during denervation. Frontiers in
Pharmacology 10: 997.
Ishibashi,
J., Perry, R.L., Asakura, A. & Rudnicki, M.A. 2005. MyoD induces myogenic
differentiation through cooperation of its NH2- and COOH-terminal regions. Journal
of Cell Biology 171(3): 471-482.
Ito,
M., Makino, N., Matsuda, A., Ikeda, Y., Kakizaki, Y., Saito, Y., Ueno, Y. &
Kawata, S. 2017. High glucose accelerates cell proliferation and increases the
secretion and mRNA expression of osteopontin in human pancreatic duct
epithelial cells. International Journal of Molecular Sciences 18(4):
807.
Krivickas,
L.S., Dorer, D.J., Ochala, J. & Frontera, W.R. 2011. Relationship between
force and size in human single muscle fibres. Experimental Physiology 96(5): 539-547.
Macpherson,
P.C., Wang, X. & Goldman, D. 2011. Myogenin regulates
denervation‐dependent muscle atrophy in mouse soleus muscle. Journal
of Cellular Biochemistry 112(8): 2149-2159.
Matsumoto,
N., Omagari, D., Ushikoshi-Nakayama, R., Yamazaki, T., Inoue, H. & Saito,
I. 2021. Hyperglycaemia induces generation of reactive oxygen species and
accelerates apoptotic cell death in salivary gland cells. Pathobiology 88: 234-241.
Muller,
K.A., Ryals, J.M., Feldman, E.L. & Wright, D.E. 2008. Abnormal muscle
spindle innervation and large-fibre neuropathy in diabetic mice. Diabetes 57(6): 1693-1701.
Panda, A.C., Abdelmohsen, K., Martindale, J.L., Di
Germanio, C., Yang, X., Grammatikakis, I., Noh, J.H., Zhang, Y., Lehrmann, E.,
Dudekula, D.B., De, S., Becker, K.G., White, E.J., Wilson, G.M., de Cabo, R.
& Gorospe, M. 2016. Novel RNA-binding activity of MYF5 enhances
Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Research 44(5): 2393-2408.
Parasoglou,
P., Rao, S. & Slade, J.M. 2017. Declining skeletal muscle function in
diabetic peripheral neuropathy. Clinical Therapeutics 39(6): 1085-1103.
Pizarro,
J.G., Folch, J., Vazquez De la Torre, A., Verdaguer, E., Junyent, F., Jordán,
J., Pallàs, M. & Camins, A. 2009. Oxidative
stress-induced DNA damage and cell cycle regulation in B65 dopaminergic cell
line. Free Radical Research 43(10): 985-994.
Powers,
S.K., Smuder, A.J. & Criswell, D.S. 2011. Mechanistic links between
oxidative stress and disuse muscle atrophy. Antioxidants & Redox
Signalling 15(9): 2519-2528.
Poy,
M.N., Spranger, M. & Stoffel, M. 2007. microRNAs and the regulation of
glucose and lipid metabolism. Diabetes, Obesity and Metabolism 9(Suppl
2): 67-73.
Qiu,
D., Zhang, L., Zhan, J., Yang, Q., Xiong, H., Hu, W., Ji, Q. & Huang, J.
2020. Hyperglycaemia decreases epithelial cell proliferation and attenuates
neutrophil activity by reducing ICAM-1 and LFA-1 expression levels. Frontiers
in Genetics 11: 616988.
Quinn,
M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V. & Millay,
D.P. 2017. Myomerger induces fusion of non-fusogenic cells and is required for
skeletal muscle development. Nature Communications 8(1): 15665.
Relaix,
F., Bencze, M., Borok, M.J., Der Vartanian, A., Gattazzo, F., Mademtzoglou, D.,
Perez-Diaz, S., Prola, A., Reyes-Fernandez, P.C., Rotini, A. & Taglietti,
V. 2021. Perspectives on skeletal muscle stem cells. Nature Communications 12: 692.
Robinson,
M.M., Dasari, S., Karakelides, H., Bergen 3rd., H.R. & Nair, K.S. 2016.
Release of skeletal muscle peptide fragments identifies individual proteins
degraded during insulin deprivation in type 1 diabetic humans and mice. American
Journal of Physiology - Endocrinology and Metabolism 311(3):
E628-E637.
Schieber,
M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative
stress. Current Biology 24(10): 453-462.
Shahini,
A., Choudhury, D., Asmani, M., Zhao, R., Lei, P. & Andreadis, S.T. 2018.
NANOG restores the impaired myogenic differentiation potential of skeletal
myoblasts after multiple population doublings. Stem Cell Research 26:
55-66.
Shintaku,
J., Peterson, J.M., Talbert, E.E., Gu, J.M., Ladner, K.J., Williams, D.R.,
Mousavi, K., Wang, R., Sartorelli, V. & Guttridge, D.C. 2016. MyoD
regulates skeletal muscle oxidative metabolism cooperatively with alternative
NF-κB. Cell Reports 17(2): 514-526.
Shirakawa,
T., Toyono, T., Inoue, A., Matsubara, T., Kawamoto, T. & Kokabu, S. 2022.
Factors regulating or regulated by myogenic regulatory factors in skeletal
muscle stem cells. Cells 11(9): 1493.
Sosa,
P., Alcalde-Estévez, E., Asenjo-Bueno, A., Plaza, P., Carrillo-López, N.,
Olmos, G., López-Ongil, S. & Ruiz-Torres, M.P. 2021. Aging-related
hyperphosphatemia impairs myogenic differentiation and enhances fibrosis in
skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle 12(5):
1266-1279.
Spassov,
A., Gredes, T., Gedrange, T., Lucke, S., Pavlovic, D. & Kunert-Keil, C.
2011. The expression of myogenic regulatory factors and muscle growth factors
in the masticatory muscles of dystrophin-deficient (mdx) mice. Cellular
& Molecular Biology Letters 16(2): 214-225.
Surinlert,
P., Kongthong, N., Watthanard, M., Sae-Lao, T., Sookbangnop, P., Pholpramool,
C. & Tipbunjong, C. 2020. Styrene oxide caused cell cycle arrest and
abolished myogenic differentiation of C2C12 myoblasts. Journal of Toxicology 2020: 1807126.
Surinlert,
P., Thitiphatphuvanon, T., Khimmaktong, W., Pholpramool, C. & Tipbunjong,
C. 2021. Hyperglycaemia induced C2C12 myoblast cell cycle arrest and skeletal
muscle atrophy by modulating sirtuins gene expression in rats. Polish
Journal of Veterinary Sciences 24(4): 563-572.
Varma,
S., Lal, B.K., Zheng, R., Breslin, J.W., Saito, S., Pappas, P.J., Hobson 2nd.,
R.W. & Durán, W.N. 2005. Hyperglycemia alters PI3k and Akt signaling and
leads to endothelial cell proliferative dysfunction. American Journal of
Physiology - Heart and Circulatory Physiology 289(4): 1744-1751.
Wüst,
S., Dröse, S., Heidler, J., Wittig, I., Klockner, I., Franko, A., Bonke, E.,
Günther, S., Gärtner, U., Boettger, T. & Braun, T. 2018. Metabolic
maturation during muscle stem cell differentiation is achieved by
miR-1/133a-mediated inhibition of the Dlk1-Dio3 mega gene cluster. Cell
Metabolism 27(5): 1026-1039.
Zacarías-Flores,
M., Sánchez-Rodríguez, M.A., García-Anaya, O.D., Correa-Muñoz, E. &
Mendoza-Núñez, V.M. 2018. Relationship between oxidative stress and muscle mass
loss in early postmenopause: An exploratory study. Endocrinología, Diabetes
y Nutrición 65(6): 328-334.
Zammit,
P.S. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and
MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Seminars
in Cell & Developmental Biology 72: 19-32.
Zheng,
Y., Zhao, C., Zhang, N., Kang, W., Lu, R., Wu, H., Geng, Y., Zhao, Y. & Xu,
X. 2018. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates
thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma
cells. Molecular Medicine Reports 17: 5635-5641.
*Corresponding
author; email: chittipong.t@psu.ac.th
|