Sains Malaysiana 52(1)(2023): 83-93

http://doi.org/10.17576/jsm-2023-5201-07

 

A Talaromyces Fungal Species with Strong Antimicrobial Activity from Deception Island, Antarctica

(Spesies Kulat Talaromyces dengan Aktiviti Antimikrob Kuat dari Pulau Deception, Antartika)

  SHEAU TING YONG1, PARIS LEONARDO LAVIN2, MARCELO ARAVENA GONZÁLEZ3 & CLEMENTE MICHAEL VUI LING WONG1,*

  1Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2Departamento de Biotecnologia, Facultad de Ciencias del Mary Recursos Biologicos, Universidad de Antofagasta,
601 Avenida Angamos, Antofagasta 1270300, Chile
3Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile

Received: 1 April 2022/Accepted: 11 October 2022

Abstract

Deception Island is well-known for harboring highly diverse microbial communities due to its unique volcanic environment in Antarctica. Most studies focused on bacteria, and relatively little was known about the fungal species on this island. The present study was aimed to determine the antimicrobial production and nutrient utilization profiles of a soil fungus from Deception Island, designated as Im33. Our findings showed that the strain had maximum mycelial growth and sporulation on malt-extract agar (MEA) medium, but it demonstrated the strongest antimicrobial activity in yeast extract-malt extract broth (YMB) medium. Phylogenetic analysis of the internal transcribed spacer 1 and 2 regions showed that it is a species belonging to the genus Talaromyces. It was resistant to cycloheximide concentrations up to 1,000 mg/L and exhibited broad-spectrum antimicrobial activity against Gram-positive and Gram-negative test pathogens, as well as being able to utilize a variety of carbon sources. This is the first report of a Talaromyces species from Deception Island. The capability of the strain to produce broad-spectrum antimicrobial compounds and various enzymes indicated that Antarctic fungi, like their bacterial counterparts, have adopted various adaptation strategies to compete and survive in the extreme environment.

 

Keywords: Antarctic; antimicrobial resistance; enzymes; fungus; South Shetland Islands

Abstrak

Pulau Deception terkenal dengan kepelbagaian komuniti mikrob kerana persekitaran gunung berapinya yang unik di Antartika. Kebanyakan kajian tertumpu kepada bakteria dan spesies kulat di pulau ini tidak begitu diketahui. Kajian ini bertujuan untuk menentukan profil pengeluaran antimikrob dan penggunaan nutrien kulat tanah dari Pulau Deception, iaitu Im33. Penemuan kami menunjukkan bahawa strain ini mempunyai pertumbuhan miselia dan spora maksimum pada media agar-ekstrak malt (MEA), tetapi menunjukkan aktiviti antimikrob yang paling kuat dalam media ekstrak malt ekstrak yis (YMB). Analisis filogenetik bagi kawasan spacer 1 dan 2 yang tertranskripsi secara dalaman menunjukkan bahawa kulat ini tergolong dalam genus Talaromyces. Kulat ini tahan terhadap kepekatan sikloheksimida sehingga 1,000 mg/L dan menunjukkan aktiviti antimikrob spektrum luas terhadap patogen Gram-positif dan Gram-negatif, di samping dapat menggunakan pelbagai punca karbon. Ini merupakan laporan pertama spesies Talaromyces dari Pulau Deception. Keupayaan strain ini untuk menghasilkan sebatian antimikrob spektrum luas dan pelbagai enzim menunjukkan bahawa kulat Antartika, seperti bakteria lain, telah menggunakan pelbagai strategi penyesuaian untuk bersaing dan bertahan dalam persekitaran yang ekstrem.

 

Kata kunci: Antartika; enzim; kulat; Pulau Shetland Selatan; rintang antimikrob

 

REFERENCES

Ajdari, Z., Ebrahimpour, A., Abdul Manan, M., Hamid, M., Mohamad, R. & Ariff, A.B. 2011. Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid-state cultivation. Journal of Biomedicine and Biotechnology 2011: 487329.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Bagy, M.M.K., Abdel-Mallek, A.Y., El-Sahanawany, A.A. & Gamal, A.M. 1997. Studies on fungi associated with laboratory ‘golden hamster’ and antibiotic effects of aloe sap, garlic extract and onion oil. Medical Journal of Islamic World Academy of Sciences 10: 3-12.

Balmas, V., Scherm, B., Ghignone, S.M., Salem, A.O.M., Cacciola, S.O. & Migheli, Q. 2005. Characterisation of Phoma tracheiphila by RAPD-PCR, microsatellite-primed PCR and ITS rDNA sequencing and development of specific primers for in planta PCR detection. European Journal of Plant Pathology 111: 235-247.

Blanco, Y., Prieto-Ballesteros, O., Gómez, M.J., Moreno-Paz, M., García-Villadangos, M., Rodríguez-Manfredi, J.A., Cruz-Gil, P., Sánchez-Román, M., Rivas, L.A. & Parro, V. 2012. Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environmental Microbiology 14: 2495-2510.

Cheah, Y.K., Lee, L.H., Chieng, C.C.Y. & Wong, C.M.V.L. 2015. Isolation, identification and screening of Actinobacteria in volcanic soil of Deception Island (the Antarctic) for antimicrobial metabolites. Polish Polar Research 36: 67-78.

Davies, J. & Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews 74(3): 417-433.

Dehoux, P., Davies, J. & Cannon, M. 1993. Natural cycloheximide resistance in yeast: The role of ribosomal protein L41. European Journal of Biochemistry 213: 841-848.

Dennis, P.G., Rushton, S.P., Newsham, K.K., Lauducina, V.A., Ord, V.J., Daniell, T.J., O’donnell, A.G. & Hopkins, D.W. 2012. Soil fungal community composition does not alter along a latitudinal gradient through the maritime and sub-Antarctic. Fungal Ecology 5: 403-408.

Elíades, L.A., Cabello, M., Voget, C., Galarza, B. & Saparrat, M. 2010. Screening for alkaline keratinolytic activity in fungi isolated from soils of the biosphere reserve “Pargue Costero del Sur” (Argentina). World Journal of Microbiology and Biotechnology 26: 2105-2111.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Fujimura, K.E. & Egger, K.N. 2012. Host plant and environment influence community assembly of high Arctic root-associated fungal communities. Fungal Ecology 5: 409-418.

Furbino, L.E., Godinho, V.M., Santiago, I.F., Pellizari, F.M., Alves, T.M.A., Zani, C.L., Junior, P.A.S., Romanha, A.J., Carvalho, A.G.O., Gil, L.H.V.G., Rosa, C.A., Minnis, A.M. & Rosa, L.H. 2014. Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microbial Ecology 67: 775-787.

Gesheva, V. 2012. Biological potential of soil populations in two Shetland islands, Livingston and Deception. The Cyprus Journal of Sciences 10: 111-118.

Gupta, M., Manisha, K. & Grover, R. 2012. Effect of various media types on the rate of growth of Aspergillus niger. Indian Journal of Fundamental and Applied Life Sciences 2: 141-144.

Held, B.W., Arenz, B.E. & Blanchette, R.A. 2011. Factors influencing the deterioration of historic structures at Deception Island, Antarctica. In Polar Settlements - Location, Techniques and Conservation, edited by Barr, S. & Chaplin, P. Oslo: International Polar Heritage Committee of ICOMOS. pp. 35-43.

Hocking, A.D., Whitelaw, M. & Harden, T.J. 1998. Penicillium radicum sp. nov. from the rhizophere of Australian wheat. Mycology Research 102: 801-806.

Ibáñez, J.M., Almendros, J., Carmona, E., Martı́nez-Arévalo, C. & Abril, M. 2003. The recent seismo-volcanic activity at Deception Island volcano. Deep Sea Research Part II: Topical Studies in Oceanography 50: 1611-1629.

Inoue, H., Decker, S.R., Taylor, L.E., Yano, S. & Sawayama, S. 2014. Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnology for Biofuels 7: 151.

Ismail, M.A., Taligoola, H.K. & Nakamya, R. 2010. Incidence of xerophilic/xerotolerant mycobiota, fusaria and nephrotoxigenic penicillia in some cereal baby foods imported into Uganda. Journal of Basic and Applied Mycology Egypt 1: 23-33.

Lo Giudice, A.L., Bruni, V. & Michaud, L. 2007. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. Journal of Basic Microbiology 47: 496-505.

Lo Giudice, A.L., Brilli, M., Bruni, V., Domenico, M., Fani, R. & Michaud, L. 2007. Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology 60: 383-396.

Karaiskos, I., Lagou, S., Pontikis, K., Rapti, V. & Poulakou, G. 2019. The “old” and the “new” antibiotics for MDR Gram-negative pathogens: For whom, when and how. Frontier in Public Health 7: 151.

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.

Kominek, L.A. 1975. Cycloheximide production by Streptomyces griseus: Control mechanisms of cycloheximide biosynthesis. Antimicrobial Agents and Chemotherapy 7(6): 856-860.

Miao, F., Yang, R., Chen, D.D., Wang, Y., Qin, B.F., Yang, X.J. & Zhou, L. 2012. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules 17: 14091-14098.

Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press.

Nurbaya, Kuswinanti, T., Rosmana, A., Baharuddin, A.R.D.S.M. & Millang, S. 2014. Growth rate and identification of Fusarium spp. associated with Aquillaria spp. from Nunukan regency, North Kalimantan. International Journal of Current Research and Academic Review 2: 33-40.

Pretsch, A., Nagl, M., Schwendinger, K., Kreiseder, B., Wiederstein, M., Pretsch, D., Genov, M., Hollaus, R., Zinssmeister, D., Debbab, A., Hundsberger, H., Eger, A., Proksch, P. & Wiesner, C. 2014. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS ONE 9: e97929.

Samson, R.A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K.A., Peterson, S.W., Varga, J. & Frisvad, J.C. 2011. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology 70: 159-183.

Sharma, G. & Pandey, R.R. 2010. Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. Journal of Yeast and Fungal Research 1: 157-164.

Shirling, E.B. & Gottlieb, D. 1966. Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology 16: 313-340.

Svahn, K.S., Chryssanthou, E., Olsen, B., Bohlin, L. & Göransson, U. 2015. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology 2: 1.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Tomova, I., Stoilova-Disheva, M., Lazarkevich, I. & Vasileva-Tonkova, E. 2015. Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science 8: 348-357.

Tranchida, M.C., Centeno, N.D., Stenglein, S.A. & Cabello, M.N. 2016. First record of Talaromyces udagawae in soil related to decomposing human remains in Argentina. Revista Argentina de Microbiologia 48(1): 86-90.

Udagawa, S. 1959. Taxonomic studies of fungi on stored rice grains. III. Penicillium group (penicillia and related genera) 2. Journal of Agricultural Science, Tokyo Nogyo Daigaku. 5: 5-21.

Waters, D.M., Ryan, L.A.M., Murray, P.G., Arendt, E.K. & Tuohy, M.G. 2011. Characterisation of a Talaromyces emersonii thermostable enzyme cocktail with applications in wheat dough rheology. Enzyme and Microbial Technology 49: 229-236.

White, T.J., Bruns, T., Lee, S.J. & Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeetics. In PCR Protocols: A Guide to Methods and Applications, edited by Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. Massachusetts: Academic Press. pp. 315-322.

Wong, C.M.V.L., Tam, H.K., Alias, S.A., González, M., González-Rocha, G. & Domínguez-Yévenes, M. 2011. Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Polish Polar Research 32(1): 3-14.

Yamazaki, H., Ōmura, S. & Tomoda, H. 2010. 6’-hydrox-3’-methoxy-mitorubrin, a new potentiator of antifungal miconazole activity, produced by Penicillium radicum FKI-3765-2. Chemical and Pharmaceutical Bulletin 58: 829-832.

Yamazaki, H., Koyama, N., Ōmura, S. & Tomoda, H. 2010. New rugulosins, anti-MRSA antibiotics, produced by Penicillium radicum FKI-3765-2. Organic Letters 12: 1572-1575.

Zang, Y., Genta-Jouve, G., Escargueil, A.E., Larsen, A.K., Guedon, L., Nay, B. & Prado, S. 2016. Antimicrobial oligophenalenone dimers from the soil fungus Talaromyces stipitatus. Journal of Natural Products 79(12): 2991-2996.

*Corresponding author; email: michaelw@ums.edu.my

 

 

 

previous