Sains Malaysiana 52(2)(2023): 431-439

http://doi.org/10.17576/jsm-2023-5202-09

 

Development of Corynebacterium glutamicum as Staphylococcal-Targeting Chassis via the Construction of Autoinducing Peptide (AIP)-Responsive Expression System

(Pembangunan Corynebacterium glutamicum sebagai Casis Penyasaran Staphylococcos melalui Pembinaan Sistem Pengekspresian Responsif terhadap Peptida Autoaruhan (AIP))

 

UMMUL SYAFIQAH RUSLAN1, NURUL HANUN AHMAD RASTON2, NUR AZLINA MOHD SHARIF2, NEOH HUI MIN3, SHEILA NATHAN2 & AHMAD BAZLI RAMZI1,*

 

1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia

 

Received: 27 June 2022/Accepted: 15 December 2022

 

Abstract

Despite increasing reports of antimicrobial activities of commensal and non-pathogenic bacteria such as Corynebacterium spp., previous studies on bioengineered therapeutics traditionally employed probiotics and food-grade bacteria which limits further advancements into microbial therapeutics research. In this study, Corynebacterium glutamicum, a generally recognised as safe (GRAS) and model bacterium was employed as a new chassis for the development of bioengineered corynebacterial chassis tailored towards Staphylococcus sp. via autoinducer peptide (AIP)-based quorum sensing (QS) interactions. To develop C. glutamicum as a staphylococcal-targeting chassis, the bacteria were transformed with the pResponse plasmid harboring AIP-responding accessory regulatory proteins agrAC and red fluorescent protein (RFP) genes under the control of the PaceA and P3 promoter, respectively, which was expected to stimulate the production of fluorescence signals in the presence of AIPs. Fluorescence activity of the C. glutamicum pResponse strain was compared to control C. glutamicum pRFP strain containing only the P3-RFP gene without the agrAC gene cassette. Using AIP-I as the input biomolecule, C. glutamicum pResponse strain fluoresced under different concentrations of AIP-I whereas no fluorescence was observed in the control C. glutamicum pRFP strain. When tested with S. aureus culture supernatant, the pResponse strain exhibited increasing fluorescence over the incubation period with the highest fluorescence signal of 183 relative fluorescence units (R.F.U) was observed at a 48 h point thereby demonstrating a functional QS-responsive protein expression system in bioengineered C. glutamicum. These findings demonstrated the feasibility and promising potential of developing bioengineered C. glutamicum as a staphylococcal-responsive and -targeting chassis.

 

Keywords: AIP signaling; bioengineered chassis; biological engineering; Corynebacterium glutamicum; Staphylococcus aureus; synthetic biology

 

Abstrak

Walaupun terdapat pertambahan pelaporan berkenaan aktiviti antimikrob oleh bakteria komensal dan bukan patogen seperti Corynebacterium spp., kajian terdahulu dalam penghasilan terapeutik terjurutera biologi secara tradisinya memfokuskan kepada penggunaan probiotik dan bakteria gred makanan yang mengekang perkembangan kemajuan dalam kajian terapeutik mikrob. Dalam kajian ini, Corynebacterium glutamicum iaitu sejenis bakteria model dan dianggap sebagai bakteria selamat (GRAS), telah digunakan untuk pembangunan casis baharu Corynebacteria yang bertindak balas dan mengaruh khusus kepada bakteria spesies Staphylococcus melalui tindak balas isyarat penderiaan kuorum (QS) berasaskan peptida autoaruhan (AIP). Bagi tujuan ini, bakteria C. glutamicum telah ditransformasi dengan plasmid pResponse yang mengandungi gen aksesori kawal atur (agr), agrAC dan protein berpendarfluor merah (RFP) yang masing-masing di bawah kawalan promoter PaceA dan P3 yang dijangkakan akan merangsang penghasilan isyarat pendarflour dengan kehadiran AIP.  Aktiviti penghasilan pendarflour oleh strain pResponse C. glutamicum dibandingkan dengan aktiviti strain kawalan pRFP C. glutamicum yang hanya mengandungi gen P3-RFP tanpa kaset gen agrAC. Melalui asai menggunakan sebatian AIP-I, strain pResponse C. glutamicum menghasilkan isyarat pendafluor namun tidak bagi strain kawalan pRFP apabila diuji dengan kepekatan berbeza AIP-I. Apabila diuji dengan sampel supernatan daripada S. aureus, strain pResponse mengeluarkan isyarat pendarfluor yang berkadaran dan selari dengan tempoh eraman. Bacaan isyarat pendarfluor tertinggi oleh pResponse adalah 183 unit pendarfluor relatif (R.F.U) pada jam ke-48 yang menunjukkan bahawa sistem penghasilan protein berasaskan tindak balas QS AIP-I ini telah berjaya diimplementasikan dalam C. glutamicum. Hasil penemuan daripada kajian ini telah menunjukkan kebolehlaksanaan dan potensi besar penggunaan C. glutamicum terjurutera biologi sebagai casis pengesan dan pensasar bakteria jenis Staphylococcus.

 

Kata kunci: Biologi sintetik; casis terjurutera biologi; Corynebacterium glutamicum; isyarat AIP; kejuruteraan biologi; Staphylococcus aureus

 

REFERENCES

Bomar, L., Brugger, S.D., Yost, B.H., Davies, S.S. & Lemon, K.P. 2016. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio 7(1): 1-13. 

Butrico, C.E. & Cassat, J.E. 2020. Quorum sensing and toxin production in Staphylococcus aureus osteomyelitis: Pathogenesis and paradox. Toxins 12(8): 516.

Byrd, A.L., Belkaid, Y. & Segre, J.A. 2018. The human skin microbiome. Nature Reviews Microbiology 16(3): 143-155.

Charbonneau, M.R., Isabella, V.M., Li, N. & Kurtz, C.B. 2020. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nature Communications 11(1): 1738.

Dodds, D., Bose, J.L., Deng, M.D., Dubé, G.R., Grossman, T.H., Kaiser, A., Kulkarni, K.,  Leger, R., Mootien-Boyd, S., Munivar, A., Oh, J., Pestrak, M., Rajpura, K., Tikhonov, A.P., Turecek, T., Whitfill, T. & Fey, P.D. 2020.  Controlling the growth of the skin commensal Staphylococcus epidermidis using d-alanine auxotrophy. mSphere 5(3): e00360-20.

Ducarmon, Q.R., Kuijper, E.J. & Olle, B. 2021. Opportunities and challenges in development of live biotherapeutic products to fight infections. The Journal of Infectious Diseases 223(3): S283-S289.

Hardy, B.L., Bansal, G., Hewlett, K.H., Arora, A., Schaffer, S.D., Kamau, E., Bennett, J.W. & Merrell, D.S. 2020. Antimicrobial activity of clinically isolated bacterial species against Staphylococcus aureus. Frontiers in Microbiology 10: 2977.

Hardy, B.L., Dickey, S.W., Plaut, R.D., Riggins, D.P., Stibitz, S., Otto, M. & Merrell, D.S. 2019. Corynebacterium pseudodiphtheriticum exploits Staphylococcus aureus virulence components in a novel polymicrobial defense strategy. mBio 10(1): e02491-18.

Inda, M.E., Broset, E., Lu, T.K. & de la Fuente-Nunez, C. 2019. Emerging frontiers in microbiome engineering. Trends in Immunology 40(10): 952-973.

Jiang, Y., Qian, F., Yang, J., Liu, Y., Dong, F., Xu, C., Sun, B., Chen, B., Xu, X. & Li, Y. 2017. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications 8: 15179.

Kim, S., Yoon, Y. & Choi, K.H. 2015. Pseudomonas aeruginosa DesB promotes Staphylococcus aureus growth inhibition in coculture by controlling the synthesis of HAQs. PLoS ONE 10(7): e0134624.

Kiryukhina, N.V., Melnikov, V.G., Suvorov, A.V., Morozova, Y.A. & Ilyin, V. K. 2013. Use of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers exposed to abnormal microclimate and altered gaseous environment. Probiotics and Antimicrobial Proteins 5(4): 233-238.

Le, K.Y. & Otto, M. 2015. Quorum-sensing regulation in staphylococci - An overview. Frontiers in Microbiology 6: 1174.

Lubkowicz, D., Ho, C.L., Hwang, I.Y., Yew, W.S., Lee, Y.S. & Chang, M.W. 2018. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology 7(5): 1229-1237.

Marchand, N. & Collins, C.H. 2013. Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnology and Bioengineering 110(11): 3003-3012.

Mashburn, L.M., Jett, A.M., Akins, D.R. & Whiteley, M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of bacteriology 187(2): 554-566.

Menberu, M.A., Liu, S., Cooksley, C., Hayes, A.J., Psaltis, A.J., Wormald, P.J. & Vreugde, S. 2021. Corynebacterium accolens has antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens 10(2): 207.

Munivar, A.M. & Whitfill, T.M. 2015. Therapeutic treatment of skin disease with recombinant commensal skin microorganisms. Google Patents. EP3148569A1 https://patents.google.com/patent/EP3148569A1/en.

Ozdemir, T., Fedorec, A.J.H., Danino, T. & Barnes, C.P. 2018. Synthetic biology and engineered live biotherapeutics: Toward increasing system complexity. Cell Systems 7(1): 5-16.

Ramsey, M.M., Freire, M.O., Gabrilska, R.A., Rumbaugh, K.P. & Lemon, K.P. 2016. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Frontiers in Microbiology 7: 1230.

Ramzi, A.B., Ku Bahaudin, K.N.A., Baharum, S.N., Che Me, M.L., Goh, H.H., Hassan, M. & Mohd Noor, N. 2018. Rapid assembly of yeast expression cassettes for phenylpropanoid biosynthesis in Saccharomyces cerevisiae. Sains Malaysiana 47(12): 2969-2974.

Ramzi, A.B., Hyeon, J.E., Kim, S.W., Park, C. & Han, S.O. 2015. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme and Microbial Technology 81: 1-7.

Rottinghaus, A.G., Amrofell, M.B. & Moon, T.S. 2020. Biosensing in smart engineered probiotics. Biotechnology Journal 15(10): e1900319.

Sanchez, S., Rodríguez-Sanoja, R., Ramos, A. & Demain, A.L. 2018. Our microbes not only produce antibiotics, they also overproduce amino acids. The Journal of Antibiotics 71(1): 26-36.

Tan, Y., Shen, J., Si, T., Ho, C.L., Li, Y. & Dai, L. 2020. Engineered live biotherapeutics: Progress and challenges. Biotechnology Journal 15: e2000155.

Tham, E.H., Koh, E., Common, J.E.A. & Hwang, I.Y. 2020. Biotherapeutic approaches in atopic dermatitis. Biotechnology Journal 15(10): e1900322.

Van der Rest, M.E., Lange, C. & Molenaar, D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied Microbiology and Biotechnology 52(4): 541-545.

Wang, Q., Zhang, J., Al Makishah, N.H., Sun, X., Wen, Z., Jiang, Y. & Yang, S. 2021. Advances and perspectives for genome editing tools of Corynebacterium glutamicum. Frontiers in Microbiology 12: 654058.

Wolf, S., Becker, J., Tsuge, Y., Kawaguchi, H., Kondo, A., Marienhagen, J., Bott, M., Wendisch, V.F. & Wittmann, C. 2021. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays in Biochemistry 65: 197-212.

Zuo, F., Chen, S. & Marcotte, H. 2020. Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnology Advances  45: 1-12.

 

*Corresponding author; email: bazliramzi@ukm.edu.my

 

 

 

previous