Sains Malaysiana 52(2)(2023): 501-512
http://doi.org/10.17576/jsm-2023-5202-14
An in vitro Adipogenic Potential and Glucose Uptake Stimulatory Effect of Betulinic Acid and Stigmasterol Isolated from Tetracera indica in
3T3-L1 Cell Line
(Potensi Adipogenik in
vitro dan Kesan Rangsangan Pengambilan Glukosa Asid Betulinik dan
Stigmasterol Dipencilkan daripada Tetracera
indica dalam Titisan Sel 3T3-L1)
MD. MAHMUDUL HASAN1,6, QAMAR UDDIN
AHMED1,2,*, JALIFAH LATIP3, SITI ZAITON MAT SOAD2,
MUHAMMAD TAHER4, AWIS
SUKARNI MOHMAD SABERE2 & ZAINUL AMIRUDDIN ZAKARIA5
1Drug Discovery and Synthetic Chemistry Research Group, Department
of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
2Pharmacognosy Research Group, Department
of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic
University Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
5Borneo Research for Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota
Kinabalu 88400, Sabah, Malaysia
6School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s
University, 47500 Subang Jaya, Selangor Darul Ehsan,
Malaysia
Received: 17 February
2022/Accepted: 16 December 2022
Abstract
Aerial parts of Tetracera indica Merr. (Dilleniaceae) are rich in betulinic acid and stigmasterol and traditionally
used to treat diabetes. This study was aimed to evaluate an in vitro antidiabetic potential of betulinicacid and stigmasterol to ascertain whether they may contribute
antidiabetic effect to T. indica. Initially, betulinicacid and stigmasterol were isolated from the most effective subfraction
(ethyl acetate) and subjected to an in
vitro antidiabetic investigation through adipogenesis and fluorescence glucose (2-NBDG) uptake assays using 3T3-L1 fibroblast. MTT viability assay was performed at 0.78 to 100 µg/mL for 48 h to
determine the safe concentration.
Both compounds were subjected to 2-NBDG uptake test on the differentiated adipocytes.
The cells were treated in safe concentrations (25-100 µg/mL) as well as in
different adipogenic cocktails, which were modified
by the addition of compounds to be investigated and in the presence or absence
of insulin (10 µM). Rosiglitazone (10 µM) was used as standard. Stems ethanol
extract and its fractions (hexane and ethyl acetate), betulinic acid and stigmasterol were found safe at their highest concentration (100
µg/mL) by inhibiting cells well below their IC50 values viz. 18.60,
35.27, 21.40, 28.86 and 33.06%, respectively. Both betulinic acid and stigmasterol at the highest safe concentration (100 µg/mL) significantly (p
<0.05) induced adipogenesis like insulin, enhanced adipogenesis like
rosiglitazone and exhibited glucose uptake activity. The present study demonstrates that both betulinic acid
and stigmasterol possess an in vitro antidiabetic potential. However, in vivo antiglycemic study on these compounds and their chemical analogs are
still warranted to ensure their therapeutic potential as safe antidiabetic
agents.
Keywords: Adipogenesis; betulinic acid; insulin like activity; insulin
sensitizing activity; stigmasterol; 2-NBDG uptake activity; 3T3-L1 preadipocyte
cells
Abstrak
Bahagian udara Tetracera indica Merr. (Dilleniaceae) kaya dengan asid betulinik dan stigmasterol serta digunakan secara tradisi untuk merawat diabetes. Kajian ini dijalankan untuk menilai potensi antidiabetik asid betulinik dan stigmasterol secara in vitro untuk memastikan sama ada kedua-dua sebatian ini menyumbang kepada kesan antidiabetik oleh T. indica. Asid betulinik dan stigmasterol diasingkan daripada subfraksi (etil asetat) yang paling berkesan. Kesan antidiabetik in vitro dikaji melalui asai adipogenesis
dan asai pengambilan glukosa berpendaflour (2-NBDG) menggunakan selfibroblas 3T3-L1. Asai kebolehhidupan MTT dijalankan pada kepekatan antara 0.78 hingga 100 µg/mL selama 48 jam bagi menentukan kepekatan yang selamat. Akhir sekali, kedua-dua sebatian diuji dengan asai 2-NBDG ke atas sel adiposit terbeza. Sel tersebut dirawat pada julat kepekatan selamat (25-100 µg/mL) dengan koktel adipogenik yang berbeza dengan pengubahsuaian adalah pada penambahan sebatian kajian dan dalam kehadiran (10 µM) atau tanpa insulin. Rosiglitazon (10 µM) digunakan sebagai sebatian piawai. Ekstrak etanol batang, fraksi (heksana dan etil asetat), asid betulinik dan stigmasterol dikenal pasti selamat pada kepekatan tertinggi (100 µg/mL), dengan merencat pertumbuhan sel di bawah nilai IC50 masing-masing iaitu 18.60, 35.27, 21.40, 28.86 dan 33.06%. Asid betulinik dan stigmasterol, kedua-duanya pada kepekatan selamat tertinggi (100 µg/mL), secara signifikan (p <0.05) mengaruh adipogenesis seperti insulin, meningkatkan adipogenesis seperti rosiglitazon dan mempamerkan aktiviti pengambilan glukosa. Kajian ini menunjukkan kedua-dua asid betulinik dan stigmasterol berpotensi sebagai antidiabetik in
vitro. Walau bagaimanapun, kajian antiglisemik in
vivo terhadap kedua-dua sebatian dan terbitannya masih diperlukan untuk memastikan potensi terapeutik sebatian sebagai agen antidiabetik yang selamat.
Kata kunci: Adipogenesis; aktiviti pengambilan 2-NBDG; aktiviti pensensitifan insulin; aktiviti seperti insulin; asidbetulinik; stigmasterol; sel preadiposit 3T3-L1
REFERENCES
Ahmed, Q.U., Ali, A.H.M., Mukhtar, S., Meshari, A.A., Parveen, H.,
Sabere, A.S.M., Nawi, M.S.M., Khatib, A., Siddiqui, M.J., Umar, A. & Alhassan, A.M. 2020. Medicinal potential of isoflavonoids: Polyphenols that may cure diabetes. Molecules 25(23): 5491.
Ahmed, Q.U., Umar, A., Taher, M., Susanti,
D., Amiroudine, M.Z.A.M. & Latip, J. 2014. Phytochemical investigation of
the leaves of Tetracera scandens Linn. and in vitro antidiabetic
activity of hypoletin. Proceedings of the International Conference on
Science, Technology and Social Sciences (ICSTSS) 2012. pp. 591-608.
Ahmed, Q.U.,
Dogarai, B.B.S., Amiroudine, M.Z.A.M., Taher, M., Latip, J., Umar, A. &
Muhammad, B.Y. 2012. Antidiabetic activity of the leaves of Tetracera indica Merr. (Dilleniaceae) in vivo and in vitro. Journal of Medicinal Plants
Research 6: 5912-5922.
Alhassan, A.M., Ahmed, Q.U., Latip, J. & Shah, S.A.A. 2019. A new sulphated flavone and
other phytoconstituents from the leaves of Tetracera indica Merr. and
their alpha-glucosidase inhibitory activity. Natural
Product Research 33(1): 1-8.
Choi, J.H., Banks, A.S., Kamenecka, T.M.,
Busby, S.A., Chalmers, M.J., Kumar, N., Kuruvilla, D.S., Shin, Y., He, Y.,
Bruning, J.B. & Marciano, D.P. 2011. Anti-diabetic actions of a non-agonist
PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477:
477-481.
Choi, J.Y., Na, M., Hyun,
H.I., Ho, L.S., Young, B.E., Yeon, K.B. & Seog, A.J. 2009. Isolation of
betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein
tyrosine phosphatase 1B inhibitory activity from the roots of Saussurea
lappa C.B. Clarke. Molecules 14(1): 266-272.
de Melo, C.L., Queiroz,
M.G., Arruda, F.A.C., Rodrigues, A.M., de Sousa, D.F., Almeida, J.G., Pessoa,
O.D., Silveira, E.R., Menezes, D.B., Melo, T.S., Santos, F.A. & Rao, V.S. 2009. Betulinic acid, a natural pentacyclic triterpenoid, prevents abdominal
fat accumulation in mice fed a high-fat diet. Journal
of Agricultural and Food
Chemistry 57: 8776-8781.
Drzewoski, J. & Hanefeld, M. 2021. The current and potential
therapeutic use of metformin-the good old drug. Pharmaceuticals 14(2): 122.
Fazakerley, D.J., Koumanov, F. & Holman, G.D. 2022.
GLUT4 on the move. Biochemical Journal 479(3): 445-462.
Hasan, M.M., Ahmed, Q.U.,
Soad, S.Z.M., Latip, J., Taher, M., Syafiq, T.M.F., Sarian, M.N., Alhassan,
A.M. & Zakaria, Z.A. 2017. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake
activities in 3T3-L1 adipocyte cells. BMC Complementary Medicine &
Therapies 17(1): 431-444.
Jin, T., Yu, H. &
Huang, X.F. 2016. Selective binding modes and allosteric inhibitory effects of
lupane triterpenes on protein tyrosine phosphatase 1B. Scientific Reports 6: 20766.
Kooti, W. 2016. The role of medicinal
plants in the treatment of diabetes: A systematic review. Electron Physician 8(1): 1832-1842.
Li, S., Eguchi, N., Lau, H.
& Ichii, H. 2020. The role of the Nrf2
signaling in obesity and insulin resistance. International Journal
of Molecular Sciences 21(18): 6973.
Ma, J.Z., Yang, X.W., Zhang, J.J.,
Liu, X., Deng, L.L., Shen, X.L. & Xu, G. 2014. Sterols and terpenoids from Viburnum odoratissimum. Natural Products and Bioprospecting 4: 175-180.
Moseti, D., Regassa, A.
& Kim, W.K. 2016. Molecular regulation of adipogenesis and potential
anti-adipogenic bioactive molecules. International Journal of Molecular Sciences 17(1): 124.
Nazaruk, J. & Borzym-Kluczyk, M. 2015.
The role of triterpenes in the management of diabetes mellitus and its
complications. Phytochemistry Reviews 14: 675-690.
Ogurtsova, K. 2017. IDF Diabetes Atlas:
Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice 128(1):
40-50.
Panda, S., Jafri, M., Kar, A. &
Meheta, B.K. 2009. Thyroid inhibitory, antiperoxidative and hypoglycemic
effects of stigmasterol isolated from Butea
monosperma. Fitoterapia 80: 123-126.
Park, J.H., Kim, R.Y. & Park, E. 2012.
Antidiabetic activity of fruits and vegetables commonly consumed in Korea:
Inhibitory potential against α-glucosidase and insulin-like action in vitro. Food Science and Biotechnology 21: 1187-1193.
Roheem, F.O., Ahmed, Q.U., Mat So'ad,
S.Z., Shah, S.A.A., Latip, J., Alhassan, A.M. & Syed Mohammad, S.N.A. 2020. Assessment of free radical
scavenging and digestive enzyme inhibitory activities of extract, fractions and
isolated compounds from Tetracera macrophylla leaves. Journal of Herbal Medicine 22: 100351.
Ruiz-Ojeda, F.J., Rupérez, A.I., Gomez-Llorente, C., Gil, A.
& Aguilera, C.M. 2016. Cell models and their application for studying
adipogenic differentiation in relation to obesity: A review. International
Journal of Molecular Sciences 17(7): 1040.
Singab, A.N.,
El-Beshbishy, H.A., Yonekawa, M., Nomura, T. & Fukai, T. 2005. Hypoglycemic effect of Egyptian Morus
alba root bark extract: Effect on diabetes and lipid peroxidation of
streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 100:
333-338.
Wang, J., Huang, M.,
Yang, J., Ma, X., Zheng, S., Deng, S., Huang, Y., Yang, X. & Zhao, P. 2017. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4
glucose transporter. Food & Nutrition Research 61(1):
1364117.
Wang, T., Wang, J., Hu, X., Huang, X.J. & Chen,
G.X. 2020. Current
understanding of glucose transporter 4 expression and functional mechanisms. World
Journal of Biological Chemistry 11(3): 76-98.
World Health
Organisation. 2020. Expert panel endorses protocol for COVID-19 herbal medicine
clinical trials.
https://www.afro.who.int/news/expert-panel-endorses-protocol-covid-19-herbal-medicine-clinical-trials. Accessed
on April 14, 2021.
Zimmet, P.Z. 2017. Diabetes and its
drivers: The largest epidemic in human history? Clinical Diabetes and Endocrinology 3(1): 1.
*Corresponding
author; email: quahmed@iium.edu.my
|