Sains Malaysiana 52(2)(2023):
589-597
http://doi.org/10.17576/jsm-2023-5202-20
Electrocardiogram Analysis of Hyperlipidemia-Induced
Wistar Rats using Wireless Mice Electrocardiogram
(Analisis Elektrokardiogram Tikus Wistar Aruhan
Hiperlipidemia menggunakan Elektrokardiogram Tikus Tanpa Wayar)
HARFI MAULANA1, AHMAD RIDWAN1,2
*, SUPRIJANTO3, SHANTY RAHAYU KUSUMAWARDANI2 &
LULU LUSIANTI FITRI1,2
1Biotechnology Department, School of Life Sciences and Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
2Biology Department, School of Life Sciences and Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
3Engineering Physics Department, Faculty of Industrial Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
Received: 14 March
2022/Accepted: 27 December 2022
Abstract
Coronary heart disease (CHD)
is a life-threatening disease caused by obstruction of the coronary arteries
that interferes with blood flow known as atherosclerosis. Hyperlipidemia, a
risk factor of atherosclerosis, is characterized by excessive concentrations of
total cholesterol, LDL, and triglycerides with low concentrations of HDL. A
high-fat diet (HFD) contributes to the progression of
atherosclerosis, CHD, and other cardiovascular diseases. This study aims to measure electrocardiography (ECG)
waves of hyperlipidemia-induced rats. Twenty rats were fed different diets for eight weeks,
i.e., the control group (normal diet) and the HFD group (high-fat
diet). Their ECG was recorded using a Wireless Mice Electrocardiogram (WIM ECG)
for 5-10 min. After eight weeks, the HFD group showed a significantly higher
lipid profile concentration (cholesterol: 179.03 mg/dL, triglyceride: 149.11
mg/dL, LDL: 123 mg/dL, HDL: 29.15 mg/dL) than the control. This hyperlipidemic
condition causes a significant change in some characteristics of the ECG wave.
At week 8, the characteristic ECG wave duration for the HFD groups was RR
intervals (176.5 ms), QT intervals (123.5 ms), T waves (33.6 ms), P wave (27.4 ms), QRS interval (64.9 ms),
ST-segment (23.7 ms), and heart rate (334 bpm). This
study concludes that long-period HFD feeding in rats leads to hyperlipidemia and
causes changes in the characteristics of ECG waves.
Keywords: Atherosclerosis; electrocardiogram; high-fat diet; hyperlipidemia; WIM ECG
Abstrak
Penyakit jantung koronari (CHD)
ialah penyakit yang mengancam nyawa yang disebabkan oleh penyumbatan arteri
koronari yang mengganggu aliran darah yang dikenali sebagai aterosklerosis. Hiperlipidemia,
faktor risiko aterosklerosis, dicirikan oleh kepekatan berlebihan jumlah
kolesterol, LDL dan trigliserida dengan kepekatan HDL yang rendah. Diet tinggi
lemak (HFD) menyumbang kepada penjanjangan aterosklerosis, CHD dan penyakit
kardiovaskular yang lain. Kajian ini bertujuan untuk mengukur gelombang
elektrokardiografi (ECG) tikus yang disebabkan oleh hiperlipidemia. Dua puluh ekor
tikus diberi makan diet yang berbeza selama lapan minggu, iaitu kumpulan
kawalan (diet biasa) dan kumpulan HFD (diet tinggi lemak). ECG mereka
direkodkan menggunakan Wireless Mice
Electrocardiogram (WIM ECG) selama 5-10 minit. Selepas lapan
minggu, kumpulan HFD menunjukkan kepekatan profil lipid yang jauh lebih tinggi
(kolesterol: 179.03 mg/dL, trigliserida: 149.11 mg/dL, LDL: 123 mg/dL, HDL:
29.15 mg/dL) daripada kawalan. Keadaan hiperlipidemik ini menyebabkan perubahan ketara
dalam beberapa ciri gelombang ECG. Pada minggu ke-8, tempoh ciri gelombang ECG untuk kumpulan
HFD ialah selang RR (176.5 ms), selang QT (123.5 ms), gelombang T (33.6 ms),
gelombang P (27.4 ms), selang QRS (64.9 ms), segmen ST (23.7 ms) dan kadar
denyutan jantung (334 bpm). Kajian ini menyimpulkan bahawa pemberian HFD jangka
panjang pada tikus membawa kepada hiperlipidemia dan menyebabkan perubahan
dalam ciri gelombang ECG.
Kata kunci: Aterosklerosis; diet
tinggi lemak; ECG WIM; elektrokardiogram; hiperlipidemia
REFERENCES
Abdurrachim, D., Ciapaite, J., Wessels, B., Nabben,
M., Luiken, J.J.F.P., Nicolay, K. & Prompers, J.J. 2014. Cardiac diastolic
dysfunction in high-fat diet fed mice is associated with lipotoxicity without
impairment of cardiac energetics in vivo. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841(10): 1525-1537.
Adermark, L., Gutierrez, S., Lagström,
O., Hammarlund, M., Licheri, V. & Johansson, M.E. 2021. Weight gain and
neuroadaptations elicited by high fat diet depend on fatty acid composition. Psychoneuroendocrinology 126: 105143.
Astuti, R. 2019. Black rice potential in
HDL and LDL profile in Sprague Dawley rat with high cholesterol diet. IOP Conference Series: Earth and
Environmental Science. 292: 012019.
Avelar, E., Cloward, T., Walker, J.,
Farney, R., Strong, M., Pendleton, R., Segerson, N., Adams, T.D., Gress, R.E.,
Hunt, S.C. & Litwin, S.E. 2007. Left ventricular hypertrophy in severe
obesity: Interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension (Dallas, Tex. : 1979) 49(1): 34-39.
Botelho, A.F., Juviano-Santos, J.V.,
Santos-Miranda, A., Menezes-Filho, J.E.R., Soto-Blanco, B., Cruz, J.,
Guatimosim, C. & Marilia, M. 2019. Non-invasive ECG recording and QT
interval correction assessment in anesthetized rats and mice. Brazilian
Journal of Veterinary Research 39(6): 409-415.
Cena, H. & Calder, P.C. 2020.
Defining a healthy diet: Evidence for the role of contemporary dietary patterns
in health and disease. Nutrients 12(2): 334.
Guzzardi, M.A. & Iozzo, P. 2011.
Fatty heart, cardiac damage, and inflammation. The Review of Diabetic
Studies: RDS 8(3): 403-417.
Hammad, M., Maher, A., Wang, K., Jiang,
F. & Amrani, M. 2018. Detection of abnormal heart conditions based on
characteristics of ECG signals. Measurement 125: 634-644.
Han, Q., Yeung, S.C., Ip, M.S.M. &
Mak, J.C.W. 2018. Dysregulation of cardiac lipid parameters in high-fat
high-cholesterol diet-induced rat model. Lipids in Health and Disease 17(1): 255.
Hua, Y., Zhang, Y., Dolence, J., Shi,
G., Ren, J. & Nair, S. 2013. Cathepsin K knockout mitigates high-fat
diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes 62(2): 498-509.
Knopfholz, J., Disserol, C.C.D., Pierin,
A.J., Schirr, F.L., Streisky, L., Takito, L.L., Massucheto Ledesma, P.,
Faria-Neto, J.R., Olandoski, M., da Cunha, C.L.P. & Bandeira, A.M. 2014.
Validation of the friedewald formula in patients with metabolic syndrome. Cholesterol 2014: 261878.
Koca, T.T., Tugan, C.B., Seyithanoglu,
M. & Kocyigit, B.F. 2021. The clinical importance of the plasma atherogenic
index, other lipid indexes, and urinary sodium and potassium excretion in
patients with stroke. Eurasian Journal of Medicine 51(2): 171-175.
Koene, R., Prizment, A., Blaes, A. &
Konety, S. 2016. Shared risk factors in cardiovascular disease and cancer. Circulation 133(11): 1104-1114.
Kumar, M., Pachori, R.B. & Acharya,
U.R. 2017. Automated diagnosis of myocardial infarction ECG signals using
sample entropy in flexible analytic wavelet transform framework. Entropy 19(9): 488.
Liu, E. & Fan, J. 2017. Fundamentals
of Laboratory Animal Science. Boca Raton: CRC Press. pp. 304-322.
Martini, F., Nath, J.L. &
Bartholomew, E.F. 2015. Fundamentals of Anatomy & Physiology.
Pearson Education. pp. 685-717.
Maulana, H. & Ridwan, A. 2021.
High-fat diets-induced metabolic disorders to study molecular mechanism of
hyperlipidemia in rats. 3BIO: Journal of Biological Science, Technology and
Management 3(2): 38-50.
Moreno-Fernández, S., Garcés-Rimón, M.,
Vera, G., Astier, J., Landrier, J.F. & Miguel, M. 2018. High fat/high
glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 10(10): 1502.
Nelson, R.H. 2013. Hyperlipidemia as a
risk factor for cardiovascular disease. Prim
Care 40(1): 195-211.
Niroumand, S., Khajedaluee, M.,
Khadem-Rezaiyan, M., Abrishami, M., Juya, M., Khodaee, G. &
Dadgarmoghaddam, M. 2015. Atherogenic index of plasma (AIP): A marker of
cardiovascular disease. Medical Journal of the Islamic Republic of Iran 29(1): 240.
Nugroho, A.A., Chusnia, C. &
Suprijanto, S. 2017. Pengembangan sistem instrumentasi untuk deteksi aktifitas
jantung pada mencit. Jurnal Otomasi Kontrol dan Instrumentasi 9(2):
109-117.
Padsalgikar, A.D. 2017. Cardiovascular
system: Structure, assessment, and diseases. Plastics in Medical Devices for
Cardiovascular Applications. pp. 103-132.
https://doi.org/10.1016/B978-0-323-35885-9.00005-9
Park, D.S. & Fishman, G.I. 2017.
Development and function of the cardiac conduction system in health and
disease. Journal of Cardiovascular Development and Disease 4(2): 7.
P2PTM
Kemenkes RI. 2019. Hari Jantung Sedunia (World Heart Day): Your Heart Is Our Heart Too. https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/hari-jantung-sedunia-world-heart-day-your-heart-is-our-heart-too
Schulpis, K. & Karikas, G.A. 1998.
Serum cholesterol and triglyceride distribution in 7767 school-aged greek
children. Pediatrics 101(5): 861-864.
Setyaji, D.Y., Prabandari, Y.S. &
Gunawan, I.M.A. 2018. Aktivitas fisik dengan penyakit jantung koroner di indonesia. Jurnal Gizi Klinik Indonesia 14(3): 115-121.
Susilowati, R., Jannah, J., Maghfuroh,
Z. & Kusuma, M.T. 2020. Antihyperlipidemic effects of apple peel extract in
high-fat diet-induced hyperlipidemic rats. Journal of Advanced
Pharmaceutical Technology & Research 11(3): 128.
Wali, J.A., Jarzebska, N., Raubenheimer,
D., Simpson, S.J., Rodionov, R.N. & O’sullivan, J.F. 2020. Cardio-metabolic
effects of high-fat diets and their underlying mechanisms - A narrative review. Nutrients 12(5): 1505.
Wang, L., Xu, F., Zhang, X.J., Jin, R.M.
& Li, X. 2015. Effect of high-fat diet on cholesterol metabolism in rats
and its association with Na+/K+-ATPase/Src/PERK signaling pathway. Journal
of Huazhong University of Science and Technology - Medical Science 35(4):
490-494.
Wiktorowska-Owczarek, A.,
Berezińska, M. & Nowak, J. 2015. PUFAs: Structures, metabolism and
functions. Advances in Clinical and Experimental Medicine: Official Organ
Wroclaw Medical University 24(6): 931-941.
Yang, Z., Hao, D., Che, Y., Zhang, L.
& Zhang, S. 2018. Structural basis and functional mechanism of lipoprotein
in cholesterol transport. In Cholesterol - Good, Bad and the Heart,
edited by Nagpal, M.L. InTech.
Yuan, Y., Liu, Q., Zhao, F., Cao, J.,
Shen, X. & Li, C. 2019. Holothuria
leucospilota polysaccharides ameliorate hyperlipidemia in high-fat
diet-induced rats via short-chain fatty acids production and lipid metabolism
regulation. International Journal of Molecular Sciences 20(19): 4738.
Zhang, X., Kong, S., Wu, M., Niu, Y.,
Wang, K., Zhu, H. & Yuan, J. 2021. Impact high fat diet on myocardial
strain in mice by 2D speckle tracking imaging. Obesity Research and Clinical
Practice 15(2): 133-137.
Zhang, Y., Shanshan, G., Yang, Z., Li,
Z., Gong, X., Zhang, Q., Dong, W. & Dong, C. 2020. Disturbance of
Di-(2-Ethylhexyl) phthalate in hepatic lipid metabolism in rats fed with high
fat diet. Food and Chemical Toxicology 146: 111848.
*Corresponding author; email: ridwan@sith.itb.ac.id