Sains Malaysiana 52(2)(2023): 589-597

http://doi.org/10.17576/jsm-2023-5202-20

 

Electrocardiogram Analysis of Hyperlipidemia-Induced Wistar Rats using Wireless Mice Electrocardiogram

(Analisis Elektrokardiogram Tikus Wistar Aruhan Hiperlipidemia menggunakan Elektrokardiogram Tikus Tanpa Wayar)

 

HARFI MAULANA1, AHMAD RIDWAN1,2 *, SUPRIJANTO3, SHANTY RAHAYU KUSUMAWARDANI2 & LULU LUSIANTI FITRI1,2

 

1Biotechnology Department, School of Life Sciences and Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia

2Biology Department, School of Life Sciences and Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia

3Engineering Physics Department, Faculty of Industrial Technology, Institute of Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia

 

Received: 14 March 2022/Accepted: 27 December 2022

 

Abstract

Coronary heart disease (CHD) is a life-threatening disease caused by obstruction of the coronary arteries that interferes with blood flow known as atherosclerosis. Hyperlipidemia, a risk factor of atherosclerosis, is characterized by excessive concentrations of total cholesterol, LDL, and triglycerides with low concentrations of HDL. A high-fat diet (HFD) contributes to the progression of atherosclerosis, CHD, and other cardiovascular diseases. This study aims to measure electrocardiography (ECG) waves of hyperlipidemia-induced rats. Twenty rats were fed different diets for eight weeks, i.e., the control group (normal diet) and the HFD group (high-fat diet). Their ECG was recorded using a Wireless Mice Electrocardiogram (WIM ECG) for 5-10 min. After eight weeks, the HFD group showed a significantly higher lipid profile concentration (cholesterol: 179.03 mg/dL, triglyceride: 149.11 mg/dL, LDL: 123 mg/dL, HDL: 29.15 mg/dL) than the control. This hyperlipidemic condition causes a significant change in some characteristics of the ECG wave. At week 8, the characteristic ECG wave duration for the HFD groups was RR intervals (176.5 ms), QT intervals (123.5 ms), T waves (33.6 ms), P wave (27.4 ms), QRS interval (64.9 ms), ST-segment (23.7 ms), and heart rate (334 bpm). This study concludes that long-period HFD feeding in rats leads to hyperlipidemia and causes changes in the characteristics of ECG waves.

 

Keywords: Atherosclerosis; electrocardiogram; high-fat diet; hyperlipidemia; WIM ECG

 

Abstrak

Penyakit jantung koronari (CHD) ialah penyakit yang mengancam nyawa yang disebabkan oleh penyumbatan arteri koronari yang mengganggu aliran darah yang dikenali sebagai aterosklerosis. Hiperlipidemia, faktor risiko aterosklerosis, dicirikan oleh kepekatan berlebihan jumlah kolesterol, LDL dan trigliserida dengan kepekatan HDL yang rendah. Diet tinggi lemak (HFD) menyumbang kepada penjanjangan aterosklerosis, CHD dan penyakit kardiovaskular yang lain. Kajian ini bertujuan untuk mengukur gelombang elektrokardiografi (ECG) tikus yang disebabkan oleh hiperlipidemia. Dua puluh ekor tikus diberi makan diet yang berbeza selama lapan minggu, iaitu kumpulan kawalan (diet biasa) dan kumpulan HFD (diet tinggi lemak). ECG mereka direkodkan menggunakan Wireless Mice Electrocardiogram (WIM ECG) selama 5-10 minit. Selepas lapan minggu, kumpulan HFD menunjukkan kepekatan profil lipid yang jauh lebih tinggi (kolesterol: 179.03 mg/dL, trigliserida: 149.11 mg/dL, LDL: 123 mg/dL, HDL: 29.15 mg/dL) daripada kawalan. Keadaan hiperlipidemik ini menyebabkan perubahan ketara dalam beberapa ciri gelombang ECG. Pada minggu ke-8, tempoh ciri gelombang ECG untuk kumpulan HFD ialah selang RR (176.5 ms), selang QT (123.5 ms), gelombang T (33.6 ms), gelombang P (27.4 ms), selang QRS (64.9 ms), segmen ST (23.7 ms) dan kadar denyutan jantung (334 bpm). Kajian ini menyimpulkan bahawa pemberian HFD jangka panjang pada tikus membawa kepada hiperlipidemia dan menyebabkan perubahan dalam ciri gelombang ECG.

 

Kata kunci: Aterosklerosis; diet tinggi lemak; ECG WIM; elektrokardiogram; hiperlipidemia

 

REFERENCES

Abdurrachim, D., Ciapaite, J., Wessels, B., Nabben, M., Luiken, J.J.F.P., Nicolay, K. & Prompers, J.J. 2014. Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841(10): 1525-1537.

Adermark, L., Gutierrez, S., Lagström, O., Hammarlund, M., Licheri, V. & Johansson, M.E. 2021. Weight gain and neuroadaptations elicited by high fat diet depend on fatty acid composition. Psychoneuroendocrinology 126: 105143.

Astuti, R. 2019. Black rice potential in HDL and LDL profile in Sprague Dawley rat with high cholesterol diet. IOP Conference Series: Earth and Environmental Science. 292: 012019.

Avelar, E., Cloward, T., Walker, J., Farney, R., Strong, M., Pendleton, R., Segerson, N., Adams, T.D., Gress, R.E., Hunt, S.C. & Litwin, S.E. 2007. Left ventricular hypertrophy in severe obesity: Interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension (Dallas, Tex. : 1979) 49(1): 34-39.

Botelho, A.F., Juviano-Santos, J.V., Santos-Miranda, A., Menezes-Filho, J.E.R., Soto-Blanco, B., Cruz, J., Guatimosim, C. & Marilia, M. 2019. Non-invasive ECG recording and QT interval correction assessment in anesthetized rats and mice. Brazilian Journal of Veterinary Research 39(6): 409-415.

Cena, H. & Calder, P.C. 2020. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients 12(2): 334.

Guzzardi, M.A. & Iozzo, P. 2011. Fatty heart, cardiac damage, and inflammation. The Review of Diabetic Studies: RDS 8(3): 403-417.

Hammad, M., Maher, A., Wang, K., Jiang, F. & Amrani, M. 2018. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 125: 634-644.

Han, Q., Yeung, S.C., Ip, M.S.M. & Mak, J.C.W. 2018. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids in Health and Disease 17(1): 255.

Hua, Y., Zhang, Y., Dolence, J., Shi, G., Ren, J. & Nair, S. 2013. Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes 62(2): 498-509.

Knopfholz, J., Disserol, C.C.D., Pierin, A.J., Schirr, F.L., Streisky, L., Takito, L.L., Massucheto Ledesma, P., Faria-Neto, J.R., Olandoski, M., da Cunha, C.L.P. & Bandeira, A.M. 2014. Validation of the friedewald formula in patients with metabolic syndrome. Cholesterol 2014: 261878.

Koca, T.T., Tugan, C.B., Seyithanoglu, M. & Kocyigit, B.F. 2021. The clinical importance of the plasma atherogenic index, other lipid indexes, and urinary sodium and potassium excretion in patients with stroke. Eurasian Journal of Medicine 51(2): 171-175.

Koene, R., Prizment, A., Blaes, A. & Konety, S. 2016. Shared risk factors in cardiovascular disease and cancer. Circulation 133(11): 1104-1114.

Kumar, M., Pachori, R.B. & Acharya, U.R. 2017. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 19(9): 488.

Liu, E. & Fan, J. 2017. Fundamentals of Laboratory Animal Science. Boca Raton: CRC Press. pp. 304-322.

Martini, F., Nath, J.L. & Bartholomew, E.F. 2015. Fundamentals of Anatomy & Physiology. Pearson Education. pp. 685-717.

Maulana, H. & Ridwan, A. 2021. High-fat diets-induced metabolic disorders to study molecular mechanism of hyperlipidemia in rats. 3BIO: Journal of Biological Science, Technology and Management 3(2): 38-50.

Moreno-Fernández, S., Garcés-Rimón, M., Vera, G., Astier, J., Landrier, J.F. & Miguel, M. 2018. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 10(10): 1502.

Nelson, R.H. 2013. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40(1): 195-211.

Niroumand, S., Khajedaluee, M., Khadem-Rezaiyan, M., Abrishami, M., Juya, M., Khodaee, G. & Dadgarmoghaddam, M. 2015. Atherogenic index of plasma (AIP): A marker of cardiovascular disease. Medical Journal of the Islamic Republic of Iran 29(1): 240.

Nugroho, A.A., Chusnia, C. & Suprijanto, S. 2017. Pengembangan sistem instrumentasi untuk deteksi aktifitas jantung pada mencit. Jurnal Otomasi Kontrol dan Instrumentasi 9(2): 109-117.

Padsalgikar, A.D. 2017. Cardiovascular system: Structure, assessment, and diseases. Plastics in Medical Devices for Cardiovascular Applications. pp. 103-132. https://doi.org/10.1016/B978-0-323-35885-9.00005-9

Park, D.S. & Fishman, G.I. 2017. Development and function of the cardiac conduction system in health and disease. Journal of Cardiovascular Development and Disease 4(2): 7.

P2PTM Kemenkes RI. 2019. Hari Jantung Sedunia (World Heart Day): Your Heart Is Our Heart Too. https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/hari-jantung-sedunia-world-heart-day-your-heart-is-our-heart-too

Schulpis, K. & Karikas, G.A. 1998. Serum cholesterol and triglyceride distribution in 7767 school-aged greek children. Pediatrics 101(5): 861-864.

Setyaji, D.Y., Prabandari, Y.S. & Gunawan, I.M.A. 2018. Aktivitas fisik dengan penyakit jantung koroner di indonesia. Jurnal Gizi Klinik Indonesia 14(3): 115-121.

Susilowati, R., Jannah, J., Maghfuroh, Z. & Kusuma, M.T. 2020. Antihyperlipidemic effects of apple peel extract in high-fat diet-induced hyperlipidemic rats. Journal of Advanced Pharmaceutical Technology & Research 11(3): 128.

Wali, J.A., Jarzebska, N., Raubenheimer, D., Simpson, S.J., Rodionov, R.N. & O’sullivan, J.F. 2020. Cardio-metabolic effects of high-fat diets and their underlying mechanisms - A narrative review. Nutrients 12(5): 1505.

Wang, L., Xu, F., Zhang, X.J., Jin, R.M. & Li, X. 2015. Effect of high-fat diet on cholesterol metabolism in rats and its association with Na+/K+-ATPase/Src/PERK signaling pathway. Journal of Huazhong University of Science and Technology - Medical Science 35(4): 490-494.

Wiktorowska-Owczarek, A., Berezińska, M. & Nowak, J. 2015. PUFAs: Structures, metabolism and functions. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 24(6): 931-941.

Yang, Z., Hao, D., Che, Y., Zhang, L. & Zhang, S. 2018. Structural basis and functional mechanism of lipoprotein in cholesterol transport. In Cholesterol - Good, Bad and the Heart, edited by Nagpal, M.L. InTech.

Yuan, Y., Liu, Q., Zhao, F., Cao, J., Shen, X. & Li, C. 2019. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation. International Journal of Molecular Sciences 20(19): 4738.

Zhang, X., Kong, S., Wu, M., Niu, Y., Wang, K., Zhu, H. & Yuan, J. 2021. Impact high fat diet on myocardial strain in mice by 2D speckle tracking imaging. Obesity Research and Clinical Practice 15(2): 133-137.

Zhang, Y., Shanshan, G., Yang, Z., Li, Z., Gong, X., Zhang, Q., Dong, W. & Dong, C. 2020. Disturbance of Di-(2-Ethylhexyl) phthalate in hepatic lipid metabolism in rats fed with high fat diet. Food and Chemical Toxicology 146: 111848.

 

*Corresponding author; email: ridwan@sith.itb.ac.id

 

 

 

 

previous