Sains Malaysiana 52(2)(2023):
599-611
http://doi.org/10.17576/jsm-2023-5202-21
Plasma-Assisted Priming: Improved Germination and
Seedling Performance of Papaya
(Penyebuan Berbantukan Plasma: Peningkatan Percambahan
dan Prestasi Anak Benih Betik)
DENG-KE XI1,
SEONG LING YAP1,2,*, NITTURI NARESH KUMAR1,
CHIAN CHENG TOH1, KENJI ISHIKAWA2 & MASARU HORI2
1Plasma Technology Research Centre,
Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Center for Low-temperature Plasma
Sciences, Nagoya University, Japan Furo-cho
Chikusa-ku, Nagoya 464-8603, Japan
Received:
25 July 2022/Accepted: 8 November 2022
Abstract
Papaya
is a one of the important tropical fruit crops with a global export of 353 ktonnne reported in 2020. The germination of papaya seed is
erratic and often non-uniform. Plasma assisted priming of seed was performed at
atmospheric pressure in a parallel plate dielectric barrier discharge system.
The germination rate of papaya seeds and the growth performance of the seedling
were monitored for several treatment plans combining the atmospheric pressure
plasma treatment with soaking of seed in deionized water. An enhanced
germination rate of 92% was obtained by the plasma assisted priming, compared
to the untreated of 60%. The plasma assisted priming performed by plasma
treatment and soaking in an opposite sequence showed different requirement and
possibly involved different mechanisms. The treatment time was reduced to only
4 minutes for pre-soaked seeds, otherwise the germination rate increased with
the plasma treatment time from 3 to 30 min treatment. The plasma assisted
priming approaches were also found enhancing seedling growth performance. The
treated seedling grows about two times bigger and the dried mass measured after
30 days was more than 100% compared to that of the untreated and hot water
treated seeds.
Keywords: Hot water treatment; papaya
germination; papaya seedling growth
performance; plasma assisting priming; plasma seed treatment
Abstrak
Betik ialah salah satu tanaman buah tropika yang penting dengan eksport global sebanyak 353 ktonnne dilaporkan pada tahun 2020. Percambahan benih betik adalah tidak menentu dan selalunya tidak seragam. Penyebuan dibantu plasma untuk percambahan benih betik dilakukan pada tekanan atmosfera dalam sistem nyahcas dielektrik dengan plat selari. Kadar percambahan benih betik dan prestasi pertumbuhan anak pokok dipantau untuk beberapa pelan yang menggabungkan rawatan plasma tekanan atmosfera dengan merendam benih dalam air ternyahion. Kadar percambahan yang dipertingkatkan sehingga 92% diperoleh oleh penyebuan dibantu plasma, berbanding 60% yang tidak dirawat. Penyebuan dibantu plasma yang dilakukan oleh rawatan plasma dan perendaman dalam susunan yang bertentangan mendedahkan keperluan yang berbeza dan mungkin melibatkan mekanisme yang berlainan. Masa rawatan dikurangkan kepada hanya 4 minit untuk benih pra-rendam, jika tidak, kadar percambahan meningkat dengan masa rawatan plasma daripada 3 hingga 30 minit. Pendekatan penyebuan dibantu plasma didapati juga meningkatkan prestasi pertumbuhan anak pokok. Anak pokok yang dirawat tumbuh lebih kurang dua kali lebih besar dan jisim kering yang diukur selepas 30 hari adalah lebih daripada 100% berbanding anak pokok yang tidak dirawat dan yang dirawat dengan air panas.
Kata kunci: Penyebuan dibantu plasma; percambahan betik; prestasi pertumbuhan anak pokok betik; rawatan air panas; rawatan plasma benih
REFERENCES
Agada, R., Usman,
W.A., Shehu, S. & Thagariki, D. 2020. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon 6(3): 03618.
Ahmed, N., Shahid,
M., Siow, K., Wee, M.M.R., Haron,
F.F., Patra, A. & Fazry, S. 2022. Germination and
growth improvement of papaya utilizing oxygen (O2) plasma treatment. Journal of Physics D: Applied Physics 55: 255205.
Attri, P.,
Ishikawa, K., Okumura, T., Koga, K., Shiratani, M.
& Mildaziene, V. 2021. Impact of seed color and
storage time on the radish seed germination and sprout growth in plasma
agriculture. Scientific Reports 11(1): 2539.
Boshra, V.
& Tajul, A.Y. 2013. Papaya-an innovative raw
material for food and pharmaceutical processing industry. Health and the
Environment Journal 4(1): 68-75.
Butscher, D.,
Van Loon, H., Waskow, A., von Rohr, P.R. & Schuppler, M. 2016. Plasma inactivation of microorganisms
on sprout seeds in a dielectric barrier discharge. International Journal of
Food Microbiology 238: 222-232.
de Groot, G.J., Hundt, A., Murphy, A.B., Bange, M.P. & Mai-Prochnow, A. 2018. Cold plasma treatment for cotton seed
germination improvement. Scientific Reports 8: 14372.
Deb, P., Das, A.,
Ghosh, S.K. & Suresh, C.P. 2008. Improvement of seed germination and
seedling growth of papaya (Carica papaya L.)
through different pre-sowing seed treatments. In Acta Hortic. 851: 313-316.
Denes, F., Manolache, S. & Young, R.A. 1999. Synthesis and surface
functionalization under cold-plasma conditions. Journal of Photopolymer
Science and Technology 12(1): 27-38.
Duermeyer, L., Khodapanahi, E., Yan, D., Krapp, A., Rothstein, S. & Nambara, E. 2018. Regulation of seed dormancy and germination by nitrate. Seed Science Research 28(3): 150-157. doi:10.1017/S096025851800020X
Dwivedi, D.H.,
Singh, S., Singh, N. & Kumar, P. 2015. Effect of plant bioregulator and
chemical treatment on germination of papaya (Carica papaya L.) cv. Pusa Nanha. Progressive Horticulture 47(2): 250-252.
Ellis, R.H., Hong,
T.D. & Roberts, Y.E. 1991. Effect of storage temperature and moisture on
the germination of papaya seeds. Seed Science Research 1(1): 69-72.
Furutani, S.C.
& Nagao, M.A. 1987. Influence of temperature, KNO3, GA3 and seed
drying on emergence of papaya seedlings. Scientia Horticulturae 32(1-2): 67-72.
Gülsoy, S.
& Özkan, K. 2013. Determination of environmental
factors and indicator plant species for site suitability assessment of Crimean
Juniper in the Acipayam District, Turkey. Sains Malaysiana 42(10): 1439-1447.
Henselová, M., Slováková, Ľ., Martinka, M.
& Zahoranová, A. 2012. Growth, anatomy and enzyme
activity changes in maize roots induced by treatment of seeds with
low-temperature plasma. Biologia 67(3):
490-497.
Li, Y., Wang, T.,
Meng, Y., Qu, G., Sun, Q., Liang, D. & Hu, S. 2017. Air atmospheric
dielectric barrier discharge plasma induced germination and growth enhancement
of wheat seed. Plasma Chemistry and Plasma Processing 37: 1621-1634.
Ling, L., Jiafeng, J., Jiangang, L., Minchong, S., Xin, H., Hanliang,
S. & Yuanhua, D. 2014. Effects of cold plasma
treatment on seed germination and seedling growth of soybean. Scientific
Reports 4(1): 1-7.
Liu, D., Niu, J. & Yu, N. 2011. Optical emission characteristics
of medium-to high-pressure N2 dielectric barrier discharge plasmas
during surface modification of polymers. Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 29(6): 061506-061510.
Luna, B. & Moreno, J.M. 2009. Light and nitrate effects on seed germination of Mediterranean plant species of several functional groups. Plant Ecology 203: 123-135.
Meng, Y., Qu, G.,
Wang, T., Sun, Q., Liang, D. & Hu, S. 2017. Enhancement of germination and
seedling growth of wheat seed using dielectric barrier discharge plasma with
various gas sources. Plasma Chemistry and Plasma Processing 37:
1105-1119.
Priatni, S., Harimadi, K., Buana, E., Kosasih, W. & Rohmatussolihat,
R. 2020. Production and characterization of spray-dried swamp eel (Monopterus albus)
protein hydrolysate prepared by papain. Sains Malaysiana 49(3): 545-552.
Randeniya, L.K.
& de Groot, G.J. 2015. Non-thermal plasma treatment of agricultural seeds
for stimulation of germination, removal of surface contamination and other
benefits: A review. Plasma Processes and Polymers 12(7): 608-623.
Reyes, M.N.,
Perez, A. & Cuevas, J. 1980. Detecting endogenous growth regulators on the sarcotesta, endosperm, and embryo by paper chromotography on fresh and old seeds of two papaya
varieties. Journal of Agriculture of the University of Puerto Rico 64:
164-172.
Srisonphan, S.
2018. Tuning surface wettability through hot carrier initiated impact
ionization in cold plasma. ACS Applied Materials & Interfaces 10(13): 11297-11304.
Thirumdas, R., Trimukhe, A., Deshmukh, R.R. & Annapure,
U.S. 2017. Functional and rheological properties of cold plasma treated rice
starch. Carbohydrate Polymers 157: 1723-1731.
Vishal, B. &
Kumar, P.P. 2018. Regulation of seed germination and abiotic stresses by
gibberellins and abscisic acid. Frontiers in Plant Science 9: 838.
Volin, J.C.,
Denes, F.S., Young, R.A. & Park, S.M. 2000. Modification of seed
germination performance through cold plasma chemistry technology. Crop
Science 40(6): 1706-1718.
Wang, Y., Thorup-Kristensen, K., Jensen, L.S. & Magid, J. 2016. Vigorous root growth is a better indicator
of early nutrient uptake than root hair traits in spring wheat grown under low
fertility. Frontiers in Plant Science 7: 865.
Wannicke, N.,
Wagner, R., Stachowiak, J., Nishime,
T.M., Ehlbeck, J., Weltmann,
K.D. & Brust, H. 2021. Efficiency of
plasma-processed air for biological decontamination of crop seeds on the
premise of unimpaired seed germination. Plasma Processes and Polymers 18(1): 2000207.
Yahiro, M.
1979. Effects of seed pretreatments on the promotion of germination in papaya,
(C. papaya L.). Memoirs of the
Faculty of Agriculture, Kagoshima University 15: 49-54.
Zahoranová, A., Hoppanová, L., Šimončicová,
J., Tučeková, Z., Medvecká,
V., Hudecová, D., Kaliňáková,
B., Kováčik, D. & Černák,
M. 2018. Effect of cold atmospheric pressure plasma on maize seeds: Enhancement
of seedlings growth and surface microorganisms inactivation. Plasma Chemistry and Plasma Processing 38(5): 969-988.
Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik,
D., Medvecká, V. & Černák,
M. 2016. Effect of cold atmospheric pressure plasma on the wheat seedlings
vigor and on the inactivation of microorganisms on the seeds surface. Plasma
Chemistry and Plasma Processing 36(2): 397-414.
Zanotti, R.F.,
Dias, D.C., Barros, R.S., DaMatta, F.M. &
Oliveira, G.L. 2014. Germination and biochemical changes in 'Formosa' papaya
seeds treated with plant hormones. Acta Scientiarum Agronomy 36: 435-442.
Zhou, Z., Huang,
Y., Yang, S. & Chen, W. 2011. Introduction of a new atmospheric pressure
plasma device and application on tomato seeds. Agricultural Sciences 2(1): 23-27.
*Corresponding
author; email: yapsl@um.edu.my