Sains Malaysiana 52(2)(2023):
669-682
http://doi.org/10.17576/jsm-2023-5202-26
Statistical
Properties and Estimation of the Three-Parameter Lindley Distribution with
Application to COVID-19 Data
(Sifat Statistik dan Anggaran Taburan Lindley Tiga Parameter dengan
Aplikasi pada Data COVID-19)
MATHIL
KAMIL THAMER1,2,* & RAOUDHA ZINE1
1Laboratory of Probability and Statistics,
Faculty of Sciences of Sfax, Sfax, Tunisia
2Department of Economics, College of
Administration and Economics, University of Anbar, Iraq
Received: 14 July 2021/Accepted: 9 May
2022
Abstract
In 2017, the
three-parameter Lindley distribution has been studied. The present paper is a
continuation of the investigation of the properties of this distribution
because of its high flexibility for modeling lifetime data. We studied some
statistical properties of this distribution as central tendency measures,
dispersion measures, and shape measures. In addition, the mode and the quantile
function of the distribution were derived by the authors. The three parameters
were estimated by the Maximum Product of
Spacing Method (MPS) due to its fame in estimating parameters. A simulation study is
carried out to examine the consistency of estimators using mean square error
(MSE). The estimators showed that they have the property of consistency because
MSEs decrease with increasing the size of the sample. On the practical side,
the MPS estimates were used to obtain statistical properties, probability
density function (p.d.f), cumulative distribution
function (c.d.f), survival function, and hazard
function for real data which represents COVID-19 Data in Iraq/Al-Anbar
Province. We found the flexibility of the distribution in representing life
data and the possibility of getting the patients' probability of death and
probability of survival for the time.
Keywords:
COVID-19 data; mathematical model; maximum product of spacing method;
three-parameter Lindley distribution
Abstrak
Pada tahun 2017, taburan Lindley tiga parameter telah dikaji. Makalah ini adalah kesinambungan daripada penyelidikan sifat pengedaran ini kerana kefleksibelannya yang tinggi untuk memodelkan data sepanjang hayat. Kami mengkaji beberapa sifat statistik taburan ini sebagai ukuran kecenderungan pusat, ukuran penyebaran
dan ukuran bentuk. Di samping itu, mod dan fungsi kuantil taburan diperoleh oleh penulis. Ketiga-tiga parameter tersebut dianggarkan menggunakan Kaedah Maksimum Jarak Jauh (MPS) kerana kemasyhurannya dalam menganggar parameter. Suatu kajian simulasi dijalankan untuk mengkaji ketekalan penganggar menggunakan min ralat kuasa dua (MSE). Penganggar menunjukkan bahawa mereka memiliki sifat ketekalan kerana MSE menurun dengan peningkatan ukuran sampel. Dari segi praktikal, anggaran MPS digunakan untuk memperoleh sifat statistik, fungsi ketumpatan kebarangkalian (p.d.f), fungsi taburan kumulatif (c.d.f), fungsi kemandirian dan fungsi bahaya untuk data sebenar yang mewakili Data
COVID-19 di Wilayah Iraq/Al-Anbar. Kami mendapati kefleksibelan penyebaran dalam mewakili data kehidupan dan kemungkinan mendapat kebarangkalian kematian pesakit dan kebarangkalian bertahan untuk masa ini.
Kata kunci: Data COVID-19; model matematik; produk maksimum kaedah jarak; taburan Lindley tiga parameter
REFERENCES
Abd
El-Monsef, M.M.E. 2015. A new Lindley distribution with location parameter. Communications in Statistics-Theory and
Methods 45(17): 5204-5219.
Afify, A.Z., Nassar,
M., Cordeiro, G.M. & Kumar, D. 2020. The Weibull Marshall-Olkin Lindley
distribution: Properties and estimation. Journal
of Taibah University for Science 14(1): 192-204.
Al-Bayati, R.S.S. 2018. Some estimation methods for lindley distribution. A Master Thesis, College of Science, Mustansiriyah University, Baghdad, Iraq (Unpublished).
Al-Mofleh, H., Afify, A.Z. &
Ibrahim, N.A. 2020. A new extended two-parameter distribution: Properties,
estimation methods, and applications in medicine and geology. Mathematics 8(9): 1578.
Arslan,
T., Acitas, S. & Senoglu,
B. 2017. Generalized Lindley and power Lindley distributions for modeling the
wind speed data. Energy Conversion and
Management 152: 300-311.
Bakouch, H.S.,
Al-Zahrani, B.M., Al-Shomrani, A.A., Marchi, V.A. & Louzada, F.
2012. An extended Lindley distribution. Journal
of the Korean Statistical Society 41: 75-85.
Basu, S., Singh, S.K.
& Singh, U. 2017. Parameter estimation of inverse Lindley distribution for
Type-I censored data. Computational
Statistics 32(1): 367-385.
Cheng,
R.C.H. & Amin, N.A.K. 1979. Maximum product-of-spacings estimation with
application to the lognormal distribution. University of Wales IST, Math. Report. p. 79-1.
Déniz, G.E. &
Ojeda, C.E. 2011. The discrete Lindley distribution: Properties and
applications. Journal of Statistical
Computation and Simulation 81(11): 1405-1416.
Déniz, G.E., Sordo, M.A. & Ojeda, C.E. 2014. The Log-Lindley
distribution as an alternative to the beta regression model with applications
in insurance. Insurance: Mathematics and
Economics 54: 49-57.
Do Espirito Santo, A.P.J. & Mazucheli,
J. 2015. Comparison of estimation methods for the Marshall–Olkin extended
Lindley distribution. Journal of
Statistical Computation and Simulation 85(17): 3437-3450.
Ghitany, M.E., Atieh, B. & Nadarajah, S. 2008. Lindley distribution
and its application. Mathematics
Computing and Simulation 78: 493-506.
Ghitany, M.E., Alqallaf, F., Al-Mutairi, D.K.
& Husain, H.A. 2011. A two-parameter weighted Lindley distribution and its
applications to survival data. Mathematics
and Computers in Simulation 81(6): 1190-1201.
Jodrá, P. 2010.
Computer generation of random variables with Lindley or Poisson-Lindley
distribution via the Lambert W function. Mathematics
and Computers in Simulation 81(4): 851-859.
Kantar,
Y.M. & Şenoğlu, B. 2008. A comparative
study for the location and scale parameters of the Weibull distribution with
given shape parameter. Computers &
Geosciences 34(12): 1900-1909.
Krishna,
H. & Kumar, K. 2011. Reliability estimation in Lindley distribution with
progressively type II right censored sample. Mathematics and Computers in Simulation 82(2): 281-294.
Kumar,
S.C. & Jose, R. 2019. On double Lindley distribution and some of its
properties. American Journal of
Mathematical and Management Sciences 38(1): 23-43.
Lindley,
D.V. 1958. Fiducial distribution and Bayes theorem. Journal of the Royal Statistical Society, Series B 20(1): 102-107.
Maiti, S.S. &
Mukherjee, I. 2018. On estimation of the PDF and CDF of the Lindley
distribution. Communications in
Statistics-Simulation and Computation 47(5): 1370-1381.
Mazucheli, J., Menezes,
A.F.B. & Chakraborty, S. 2018. On the one parameter unit-Lindley
distribution and its associated regression model for proportion data. Journal of Applied Statistics 46(4):
700-714.
Nassar,
M., Afify, A.Z., Dey, S. & Kumar, D. 2018. A new
extension of Weibull distribution: Properties and different methods of
estimation. Journal of Computational and
Applied Mathematics 336: 439-457.
Shanker, R. & Mishra,
A. 2013a. A quasi Lindley distribution. African
Journal of Mathematics and Computer Science Research 6(4): 64-71.
Shanker, R. & Mishra,
A. 2013b. A two-parameter Lindley distribution. Statistics in Transition-New Series 14(1): 45-56.
Shanker, R., Kamlesh,
K.K. & Fesshaye, H. 2017. A two parameter Lindley
distribution: Its properties and applications. Biostatistics and Biometrics Open Access Journal 1(4): 85-90.
Shanker, R., Fesshaye, H. & Sharma, S. 2016. On two parameter
Lindley distribution and its applications to model lifetime data. Biom. Biostat. Int. J.
3(1): 9-15.
Shanker, R., Sharma, S.
& Shanker, R. 2013. A two-parameter Lindley
distribution for modeling waiting and survival times data. Applied Mathematics 4: 363-368.
Shanker, R., Shukla,
K.K., Shanker, R. & Tekie,
A.L. 2017. A three-parameter Lindley distribution. American Journal of Mathematics and Statistics 7(1): 15-26.
Sharma,
V.K., Singh, S.K., Singh, U. & Agiwal, V. 2015.
The inverse Lindley distribution: A stress-strength reliability model with
application to head and neck cancer data. Journal
of Industrial and Production Engineering 32(3): 162-173.
Singh,
S.K., Singh, U. & Sharma, V.K. 2014. The truncated Lindley distribution:
Inference and application. Journal of
Statistics Applications and Probability 3(2): 219-228.
Zakerzadeh, H. & Dolati, A. 2009. Generalized Lindley distribution. Journal of Mathematical Extension 3(2):
13-25.
*Corresponding author; email: mathil.thamir@uoanbar.edu.iq