Sains Malaysiana 52(3)(2023): 1011-1021
http://doi.org/10.17576/jsm-2023-5203-23
Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System
and Wavelet Functions
(Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil)
JAMIL J. JABER1 NURUL AITYQAH YAACOB 2,3,* & SADAM ALWADI1
1Department of Finance, Faculty of Business, The
University of Jordan /Aqaba branch, Aqaba, Jordan
2Institute of
Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
3Mathematical Sciences Studies, College of Computing,
Informatics and Media,
Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
Received:
9 May 2022/Accepted: 24 January 2023
Abstract
Mortality studies are essential in determining the
health status and demographic composition of a population. The Lee–Carter (LC)
modelling framework is extended to incorporate the macroeconomic variables that
affect mortality, especially in forecasting. This paper makes several major contributions. First, a
new model (LC-WT-ANFIS) employing the adaptive network-based fuzzy inference
system (ANFIS) was proposed in conjunction with a nonlinear spectral model of
maximum overlapping discrete wavelet transform (MODWT) that includes five
mathematical functions, namely, Haar, Daubechies (d4), least square (la8), best
localization (bl14), and Coiflet (c6) to enhance the forecasting accuracy of
the LC model. Annual mortality data was collected from five countries
(Australia, England, France, Japan, and the USA) from 1950 to 2016. Second, we
selected gross domestic product (GDP), unemployment rate (UR), and inflation
rate (IF) as input values according to correlation and multiple regressions.
The input variables in this study were obtained from the World Bank and
Datastream. The output variable was collected from the mortality rates in Human
Mortality Database. Finally, the LC model’s projected log of death rates was
compared with wavelet filters and the traditional LC model. The performance of the proposed model
(LC-WT-ANFIS) was evaluated based on mean absolute percentage error (MAPE) and
mean error (ME). Results showed that the LC-WT-ANFIS
model performed better than the traditional model. Therefore, the proposed
forecasting model is capable of projecting mortality rates.
Keywords: ANFIS; forecast; macroeconomic; mortality; Lee–Carter
model; wavelet
Abstrak
Kajian kematian adalah penting dalam menentukan status kesihatan dan
komposisi demografi populasi. Rangka kerja pemodelan Lee–Carter (LC)
diperluaskan untuk menggabungkan pemboleh ubah makroekonomi yang mempengaruhi
kematian, terutamanya dalam peramalan.
Sumbangan utama kertas ini adalah seperti berikut. Pertama, model
baharu (LC-WT-ANFIS) yang menggunakan sistem inferens kabur berasaskan
rangkaian adaptif (ANFIS) telah dicadangkan bersama dengan model spektrum tak
linear bagi transformasi gelombang kecil diskret bertindih maksimum (MODWT)
yang merangkumi lima fungsi matematik, iaitu, Haar, Daubechies (d4), least
square (la8), best localization (bl14) dan Coiflet (c6) untuk meningkatkan
ketepatan ramalan model LC. Data kematian tahunan telah dikumpulkan dari lima
negara (Australia, England, Perancis, Jepun dan Amerika Syarikat) dari tahun
1950 hingga 2016. Kedua, keluaran dalam negara kasar (GDP), kadar pengangguran
(UR) dan kadar inflasi (IF) dipilih sebagai nilai input mengikut korelasi dan
regresi berganda. Pemboleh ubah input bagi kajian ini diperoleh dari World Bank
dan Datastream, manakala pemboleh ubah output dikumpulkan daripada kadar
kematian dalam Human Mortality Database.
Akhir sekali, unjuran log kadar kematian model LC dibandingkan dengan penapis
gelombang kecil dan model tradisional LC. Prestasi model yang
dicadangkan (LC-WT-ANFIS) dinilai dari segi ralat peratusan mutlak min (MAPE)
dan ralat min (ME). Keputusan kajian menunjukkan bahawa prestasi LC-WT-ANFIS
adalah lebih baik daripada model tradisi. Oleh itu, model ramalan yang
dicadangkan mampu mengunjurkan kadar kematian.
Kata kunci: ANFIS; gelombang
kecil; kematian; makroekonomi; model Lee–Carter; ramalan
REFERENCES
Alenezy,
A.H., Ismail, M.T., Wadi, S.A., Tahir, M., Hamadneh, N.N., Jaber, J.J. &
Khan, W. A. 2021. Forecasting stock market volatility using hybrid of adaptive
network of fuzzy inference system and wavelet functions. Journal of
Mathematics (Special Issue -
Transport and Mixing Fluid Flow in Dynamical Systems) 2021: Article ID. 9954341.
Andreozzi, L., Blaconá, M.T. & Arnesi, N. 2011. The Lee Carter method for estimating and forecasting mortality: An application for Argentina. In International Symposium on Forecasting-2011, Prague Proceedings 2050(5): 1–17.
Atsalakis, G., Nezis, D., Matalliotakis, G., Ucenic,
C.I. & Skiadas, C. 2007. Forecasting mortality rate using a neural network
with fuzzy inference system. International
Workshop on Applied Probability. Compi'egne, FR.
Boonen, T.J. & Li, H. 2017. Modeling and
forecasting mortality with economic growth: A multipopulation approach. Demography 54(5): 1921-1946.
Booth, H., Maindonald, J. & Smith, L. 2002.
Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3): 325-336.
Booth, H., Hyndman, R.J., Tickle, L. & De Jong, P.
2006. Lee-Carter mortality forecasting: A multi-country comparison of variants
and extensions. Demographic Research 15: 289-310.
Brouhns,
N., Denuit, M. & Vermunt, J.K. 2002. Measuring the longevity risk in
mortality projections. Bulletin of the Swiss Association of Actuaries 2(1): 105-130.
Cornish, C.R., Bretherton, C.S. & Percival, D.B.
2006. Maximal overlap wavelet statistical analysis with application to
atmospheric turbulence. Boundary-Layer
Meteorology 119(2): 339-374.
Datastream 2020. Thomson Reuters Datastream. https://www.library.ucsb.edu/node/7813. Accessed on November 2020.
Daubechies, I. 1992. Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics. https://doi.org/10.1137/1.9781611970104
French, D. 2014. International mortality modelling -
An economic perspective. Economics
Letters 122(2): 182-186.
French, D. & O'Hare, C. 2014. Forecasting death
rates using exogenous determinants. Journal
of Forecasting 33(8): 640-650.
Girosi, F. & King, G. 2007. Understanding the Lee-Carter Mortality Forecasting Method. Gking.
Harvard. Edu.
Hainaut, D. & Denuit, M. 2020. Wavelet-based
feature extraction for mortality projection. ASTIN Bulletin: The Journal of the IAA 50(3): 675-707.
Hanewald, K. 2011. Explaining mortality dynamics: The
role of macroeconomic fluctuations and cause of death trends. North American Actuarial Journal 15(2):
290-314.
Hanewald, K., Post, T. & Gründl, H. 2011.
Stochastic mortality, macroeconomic risks and life insurer solvency. The Geneva Papers on Risk and
Insurance-Issues and Practice 36(3): 458-475.
Harandizadeh,
H. & Armaghani, D.J. 2021. Prediction of air-overpressure induced by
blasting using an ANFIS-PNN model optimized by GA. Applied Soft
Computing 99: 106904.
Hong, W.H., Yap, J.H., Selvachandran, G., Thong, P.H.
& Son, L.H. 2021. Forecasting mortality rates using hybrid Lee–Carter
model, artificial neural network and random forest. Complex & Intelligent Systems 7(1): 163-189.
Human Mortality Database. 2020. University of
California, Berkeley (USA), and Max Planck Institute for Demographic Research
(Germany). https://www.mortality.org/
Hyndman, R.J. & Ullah, M.S. 2007. Robust
forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis 51(10): 4942-4956.
Lee, R.D. & Carter, L.R. 1992. Modeling and
forecasting US mortality. Journal of the
American Statistical Association 87(419): 659-671.
Li, N. & Lee, R. 2005. Coherent mortality
forecasts for a group of populations: An extension of the Lee-Carter
method. Demography 42(3):
575-594.
Mallat, S.G. 1989. A theory for multiresolution signal
decomposition: The wavelet representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7): 674-693. doi: 10.1109/34.192463
Mehra, M. 2018. Wavelets
Theory and Its Applications. Singapore: Springer.
Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S.
& Perla, F. 2019. A deep learning integrated Lee–Carter model. Risks 7(1): 33.
Nor, S.R.M., Yusof, F. & Norrulashikin, S.M.
2021. Coherent mortality model in a state-space approach. Sains
Malaysiana 50(4): 1101-1111.
Percival, D.B. & Walden, A.T. 2000. Wavelet Methods for Time Series Analysis
(Vol. 4). Cambridge: Cambridge University Press.
Renshaw, A.E. & Haberman, S. 2006. A cohort-based
extension to the Lee–Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38(3): 556-570.
Wang, J.Z. 2007. Fitting and Forecasting Mortality for Sweden: Applying the Lee-Carter Model. Mathematical Statistics, Stockholm University.
Wiśniowski, A., Smith, P.W., Bijak, J., Raymer,
J. & Forster, J.J. 2015. Bayesian population forecasting: Extending the
Lee-Carter method. Demography 52(3): 1035-1059.
World Bank. 2021. World
Development Indicators.https://data.worldbank.org/ Accessed
on January 2021.
Yaacob, N.A., Jaber, J.J., Pathmanathan, D., Alwadi,
S. & Mohamed, I. 2021. Hybrid of the Lee-Carter Model with maximum overlap
discrete wavelet transform filters in forecasting mortality rates. Mathematics 9(18): 2295.
Yan, W. 2012. Toward automatic time-series forecasting
using neural networks. IEEE
Transactions on Neural Networks and Learning Systems 23(7): 1028-1039.
Zhang, G., Patuwo, B.E. & Hu, M.Y. 1998.
Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1): 35-62.
*Corresponding
author; email: aityqah@uitm.edu.my
|