Sains Malaysiana 52(3)(2023): 1011-1021

http://doi.org/10.17576/jsm-2023-5203-23

 

Hybrid Lee-Carter Model with Adaptive Network of Fuzzy Inference System and Wavelet Functions

(Model Hibrid Lee-Carter dengan Rangkaian Adaptif Sistem Inferens Kabur dan Fungsi Gelombang Kecil)

 

JAMIL J. JABER1 NURUL AITYQAH YAACOB 2,3,* & SADAM ALWADI1

 

1Department of Finance, Faculty of Business, The University of Jordan /Aqaba branch, Aqaba, Jordan

 2Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

3Mathematical Sciences Studies, College of Computing, Informatics and Media,

Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

Received: 9 May 2022/Accepted: 24 January 2023

 

Abstract

Mortality studies are essential in determining the health status and demographic composition of a population. The Lee–Carter (LC) modelling framework is extended to incorporate the macroeconomic variables that affect mortality, especially in forecasting. This paper makes several major contributions. First, a new model (LC-WT-ANFIS) employing the adaptive network-based fuzzy inference system (ANFIS) was proposed in conjunction with a nonlinear spectral model of maximum overlapping discrete wavelet transform (MODWT) that includes five mathematical functions, namely, Haar, Daubechies (d4), least square (la8), best localization (bl14), and Coiflet (c6) to enhance the forecasting accuracy of the LC model. Annual mortality data was collected from five countries (Australia, England, France, Japan, and the USA) from 1950 to 2016. Second, we selected gross domestic product (GDP), unemployment rate (UR), and inflation rate (IF) as input values according to correlation and multiple regressions. The input variables in this study were obtained from the World Bank and Datastream. The output variable was collected from the mortality rates in Human Mortality Database. Finally, the LC model’s projected log of death rates was compared with wavelet filters and the traditional LC model. The performance of the proposed model (LC-WT-ANFIS) was evaluated based on mean absolute percentage error (MAPE) and mean error (ME). Results showed that the LC-WT-ANFIS model performed better than the traditional model. Therefore, the proposed forecasting model is capable of projecting mortality rates.

 

Keywords: ANFIS; forecast; macroeconomic; mortality; Lee–Carter model; wavelet

 

Abstrak

Kajian kematian adalah penting dalam menentukan status kesihatan dan komposisi demografi populasi. Rangka kerja pemodelan Lee–Carter (LC) diperluaskan untuk menggabungkan pemboleh ubah makroekonomi yang mempengaruhi kematian, terutamanya dalam peramalan. Sumbangan utama kertas ini adalah seperti berikut. Pertama, model baharu (LC-WT-ANFIS) yang menggunakan sistem inferens kabur berasaskan rangkaian adaptif (ANFIS) telah dicadangkan bersama dengan model spektrum tak linear bagi transformasi gelombang kecil diskret bertindih maksimum (MODWT) yang merangkumi lima fungsi matematik, iaitu, Haar, Daubechies (d4), least square (la8), best localization (bl14) dan Coiflet (c6) untuk meningkatkan ketepatan ramalan model LC. Data kematian tahunan telah dikumpulkan dari lima negara (Australia, England, Perancis, Jepun dan Amerika Syarikat) dari tahun 1950 hingga 2016. Kedua, keluaran dalam negara kasar (GDP), kadar pengangguran (UR) dan kadar inflasi (IF) dipilih sebagai nilai input mengikut korelasi dan regresi berganda. Pemboleh ubah input bagi kajian ini diperoleh dari World Bank dan Datastream, manakala pemboleh ubah output dikumpulkan daripada kadar kematian dalam Human Mortality Database. Akhir sekali, unjuran log kadar kematian model LC dibandingkan dengan penapis gelombang kecil dan model tradisional LC. Prestasi model yang dicadangkan (LC-WT-ANFIS) dinilai dari segi ralat peratusan mutlak min (MAPE) dan ralat min (ME). Keputusan kajian menunjukkan bahawa prestasi LC-WT-ANFIS adalah lebih baik daripada model tradisi. Oleh itu, model ramalan yang dicadangkan mampu mengunjurkan kadar kematian.

 

Kata kunci: ANFIS; gelombang kecil; kematian; makroekonomi; model Lee–Carter; ramalan

 

REFERENCES

Alenezy, A.H., Ismail, M.T., Wadi, S.A., Tahir, M., Hamadneh, N.N., Jaber, J.J. & Khan, W. A. 2021. Forecasting stock market volatility using hybrid of adaptive network of fuzzy inference system and wavelet functions. Journal of Mathematics (Special Issue - Transport and Mixing Fluid Flow in Dynamical Systems) 2021: Article ID. 9954341.

Andreozzi, L., Blaconá, M.T. & Arnesi, N. 2011. The Lee Carter method for estimating and forecasting mortality: An application for Argentina. In International Symposium on Forecasting-2011, Prague Proceedings 2050(5): 1–17.

Atsalakis, G., Nezis, D., Matalliotakis, G., Ucenic, C.I. & Skiadas, C. 2007. Forecasting mortality rate using a neural network with fuzzy inference system. International Workshop on Applied Probability. Compi'egne, FR.

Boonen, T.J. & Li, H. 2017. Modeling and forecasting mortality with economic growth: A multipopulation approach. Demography 54(5): 1921-1946.

Booth, H., Maindonald, J. & Smith, L. 2002. Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3): 325-336.

Booth, H., Hyndman, R.J., Tickle, L. & De Jong, P. 2006. Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions. Demographic Research 15: 289-310.

Brouhns, N., Denuit, M. & Vermunt, J.K. 2002. Measuring the longevity risk in mortality projections. Bulletin of the Swiss Association of Actuaries 2(1): 105-130.

Cornish, C.R., Bretherton, C.S. & Percival, D.B. 2006. Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Boundary-Layer Meteorology 119(2): 339-374.

Datastream 2020. Thomson Reuters Datastream. https://www.library.ucsb.edu/node/7813. Accessed on November 2020.

Daubechies, I. 1992. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970104

French, D. 2014. International mortality modelling - An economic perspective. Economics Letters 122(2): 182-186.

French, D. & O'Hare, C. 2014. Forecasting death rates using exogenous determinants. Journal of Forecasting 33(8): 640-650.

Girosi, F. & King, G. 2007. Understanding the Lee-Carter Mortality Forecasting Method. Gking. Harvard. Edu.

Hainaut, D. & Denuit, M. 2020. Wavelet-based feature extraction for mortality projection. ASTIN Bulletin: The Journal of the IAA 50(3): 675-707.

Hanewald, K. 2011. Explaining mortality dynamics: The role of macroeconomic fluctuations and cause of death trends. North American Actuarial Journal 15(2): 290-314.

Hanewald, K., Post, T. & Gründl, H. 2011. Stochastic mortality, macroeconomic risks and life insurer solvency. The Geneva Papers on Risk and Insurance-Issues and Practice 36(3): 458-475.

Harandizadeh, H. & Armaghani, D.J. 2021. Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Applied Soft Computing 99: 106904.

Hong, W.H., Yap, J.H., Selvachandran, G., Thong, P.H. & Son, L.H. 2021. Forecasting mortality rates using hybrid Lee–Carter model, artificial neural network and random forest. Complex & Intelligent Systems 7(1): 163-189.

Human Mortality Database. 2020. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). https://www.mortality.org/

Hyndman, R.J. & Ullah, M.S. 2007. Robust forecasting of mortality and fertility rates: A functional data approach. Computational Statistics & Data Analysis 51(10): 4942-4956.

Lee, R.D. & Carter, L.R. 1992. Modeling and forecasting US mortality. Journal of the American Statistical Association 87(419): 659-671.

Li, N. & Lee, R. 2005. Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42(3): 575-594.

Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7): 674-693. doi: 10.1109/34.192463

Mehra, M. 2018. Wavelets Theory and Its Applications. Singapore: Springer.

Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S. & Perla, F. 2019. A deep learning integrated Lee–Carter model. Risks 7(1): 33.

Nor, S.R.M., Yusof, F. & Norrulashikin, S.M. 2021. Coherent mortality model in a state-space approach. Sains Malaysiana 50(4): 1101-1111.

Percival, D.B. & Walden, A.T. 2000. Wavelet Methods for Time Series Analysis (Vol. 4). Cambridge: Cambridge University Press.

Renshaw, A.E. & Haberman, S. 2006. A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38(3): 556-570.

Wang, J.Z. 2007. Fitting and Forecasting Mortality for Sweden: Applying the Lee-Carter Model. Mathematical Statistics, Stockholm University.

Wiśniowski, A., Smith, P.W., Bijak, J., Raymer, J. & Forster, J.J. 2015. Bayesian population forecasting: Extending the Lee-Carter method. Demography 52(3): 1035-1059.

World Bank. 2021. World Development Indicators.https://data.worldbank.org/ Accessed on January 2021.

Yaacob, N.A., Jaber, J.J., Pathmanathan, D., Alwadi, S. & Mohamed, I. 2021. Hybrid of the Lee-Carter Model with maximum overlap discrete wavelet transform filters in forecasting mortality rates. Mathematics 9(18): 2295.

Yan, W. 2012. Toward automatic time-series forecasting using neural networks. IEEE Transactions on Neural Networks and Learning Systems 23(7): 1028-1039.

Zhang, G., Patuwo, B.E. & Hu, M.Y. 1998. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1): 35-62.

 

*Corresponding author; email: aityqah@uitm.edu.my

 

 

 

 

 

previous