Sains Malaysiana 52(3)(2023): 693-704
http://doi.org/10.17576/jsm-2023-5203-02
Do Salinity, Limb Autotomy and Crab Sources Stimulate Shedding Efficiency
of Mud Crab in Soft-Shell Production?
(Adakah Kemasinan, Autotomi Anggota dan Punca Ketam Merangsang Kecekapan
Penanggalan Ketam Bakau dalam Penghasilan Cangkang Lembut?)
MD.
HASHMI SAKIB1, SHAWON AHMMED1, DEBASHIS KUMAR MONDAL1,
MD. LATIFUL ISLAM1,* & YAHIA MAHMUD2
1Bangladesh
Fisheries Research Institute, Brackishwater Station, Paikgacha, Khulna-9280,
Bangladesh
2Bangladesh Fisheries Research Institute,
Mymensingh-2201, Bangladesh
Received: 14 September 2022/Accepted: 20 January 2023
Abstract
The present study was conducted to optimize
the water salinity, limb autotomy and growth performance of Juvenile mud crabs
(JMC) (Scylla olivacea) cultured in
control habitat (tanks, hatchery) compared to wild sources. In this regard, a
study was performed in tanks with 5, 10,
15 ppt salinity level and in a pond having natural salinity level (control).
After seven weeks of JMC culturing, it was observed that better growth
attributes including survival rate, weight gain and shorter shedding period of
JMC was attained at 15 ppt salinity in tanks compared to control. This
optimized salinity level (15 ppt) was considerd for the second study where JMC
legs were autotomized. In this study, better growth performance attributes were
observed when both side walking legs were autotomized compared to one side
walking legs autotomy and no autotomy. Considering the same salinity level (15
ppt), the third study was conducted to
evaluate the growth performance of JMC cultured in hatchery (pilot scale) with
their wild counterperts. Result showed
that higher moulting rate and better growth performance (faster weight gain) of
JMC were achieved in hatchery compared
to wild cultured. However, JMC collected from hatchery and wild habitat
acquired the same carapace width (CW) and body weight (BW) after twenty days
rearing.
Keywords: Brackishwater;
environmental stress; physical stress; hatchery; wild
Abstrak
Penyelidikan ini dijalankan
untuk mengoptimumkan kemasinan air, autotomi anggota dan prestasi pertumbuhan
juvenil ketam bakau (JMC) (Scylla olivacea) yang dikultur dalam habitat
kawalan (tangki, tempat penetasan) berbanding punca liar. Dalam hal ini,
kajian telah dilakukan di dalam tangki dengan paras kemasinan 5, 10, 15 ppt dan
di dalam kolam yang mempunyai aras kemasinan semula jadi (kawalan). Selepas
tujuh minggu pengkulturan JMC, diperhatikan bahawa sifat pertumbuhan yang lebih
baik termasuk kadar kemandirian, pertambahan berat badan dan tempoh penanggalan
JMC yang lebih pendek telah dicapai pada kemasinan 15 ppt dalam tangki
berbanding kawalan. Tahap kemasinan yang dioptimumkan ini (15 ppt) telah
dipertimbangkan untuk kajian kedua dengan kaki JMC diautomisasi. Dalam kajian
ini, atribut prestasi pertumbuhan yang lebih baik diperhatikan apabila
kedua-dua kaki berjalan sisi diautomisasi berbanding autotomi kaki berjalan
sebelah dan tiada autotomi. Dengan mengambil kira tahap kemasinan yang sama (15
ppt), kajian ketiga telah dijalankan untuk menilai prestasi pertumbuhan JMC
yang dikultur dalam tempat penetasan (skala perintis) dengan rakan liar mereka.
Keputusan menunjukkan bahawa kadar penyalinan kulit yang lebih tinggi dan prestasi
pertumbuhan yang lebih baik (pertambahan berat badan yang lebih cepat) JMC
telah dicapai dalam tempat penetasan berbanding dengan kultur liar. Walau
bagaimanapun, JMC yang diambil dari tempat penetasan dan habitat liar mempunyai
lebar karapas (CW) dan berat badan (BW) yang sama selepas pemeliharaan dua
puluh hari.
Kata kunci: Air payau; liar;
tekanan alam sekitar; tekanan fizikal; tempat penetasan
References
American Public Health Association (APHA). 1992. Standard Methods for
the Examination of Water and Wastewater. 18th ed. Washington, DC, USA:
American Public Health Association.
Association of Official Analytical Chemists (AOAC). 1990. Official
Methods of Analysis of the Association of Official Analytical Chemists.
15th ed. Virginia, USA: Association of Official Analytical Chemists.
Boonsanit, P. & Pairohakul, S. 2021. Effects of salinity on
haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in
the male mud crab Scylla olivacea (Herbst, 1796). Marine Biology
Research 17(1): 86-97.
Chang, E.S. & Mykles, D.L. 2011. Review: Regulation of crustacean
molting: A review and our perspectives. General and Comparative
Endocrinology 172: 323-330.
Chaves, J.C. & Eggleston, D.B. 2003. Blue crab mortality in the North
Carolina soft shell industry: Biological and operational effects. Journal of
Shellfish Research 22: 241-250.
Dana, S.S., Ghosh, A. & Bandyopadhyay, U.K. 2015. Socio-economic
profile and problems of mud-crab farmers of South 24-Parganas, West Bengal: An
explorative study. Journal of Crop and Weed 11: 120-123.
de la
Cruz‐Huervana, J.J.Y., Quinitio, E.T. & Corre, V.L. 2019. Induction
of moulting in hatchery‐reared mangrove crab Scylla serrata juveniles through temperature manipulation or autotomy. Aquaculture Research 50: 3000-3008.
Duncan, D.B. 1955.
Multiple range and multiple F tests. Biometrics 11: 1-42.
Dvoretsky, A.G.
& Dvoretsky, V.G. 2012. Does spine removal affect molting process in the
king red crab (Paralithodes camtschaticus) in the Barents Sea? Aquaculture 326: 173-177.
Ewel, K.C. 2008. Mangrove crab (Scylla serrata) populations may
sometimes be best managed locally. Journal of Sea Research 59(1-2):
114-120.
Fujaya, Y. 2011. Growth and molting of mud crab administered by different
doses of vitomolt. Jurnal Akuakultur Indonesia 10: 24-28.
Fujaya, Y., Rukminasari, N., Alam, N., Rusdi, M., Fazhan, H. & Waiho,
K. 2020. Is limb autotomy really efficient compared to traditional rearing in
soft-shell crab (Scylla olivacea) production? Aquaculture Reports 18:
100432.
Gao, J., Wang, X., Zou, Z., Jia, X., Wang, Y. & Zhang, Z. 2014.
Transcriptome analysis of the differences in gene expression between testis and
ovary in green mud crab (Scylla paramamosain). BMC Genomics 15(1):
1-15.
Gaude, A.R. & Anderson, J.A. 2011. Soft Shell Crab Shedding
Systems. USA: Southern Regional Aquaculture Center (SRAC) Publication.
Harris, R.E. 1982.
Life history, ecology and stock assessment of the blue crab Callinectes
sapidus of the United States Atlantic Coast - A review. VIMS
Books and Book Chapters. p.
93.
Hartanti, N.U. 2021.
Effectiveness of feeding trash fish and spinach extract on mud crab (Scylla
serrata) feed for molting acceleration with the popeye method. Annual
Conference on Health and Food Science Technology. p. 012050.
Hasnidar & Tamsil,
A. 2019. Concentration of Mud Crab (Scylla olivacea Herbst, 1796)
moulting hormones based on moon phase. MarSave International Symposium 2018:
Strengthening Marine Resilience for Sustainable Development Goals. p. 012011.
Hasnidar, H., Tamsil, A. & Wamnebo, M.I. 2021. The effects of the
amaranth extract (Amaranthus spp.) on the molting of orange mud crab (Scylla
olivacea). Aquaculture, Aquarium, Conservation & Legislation 14(2):
1036-1045.
He, J. 2015. Chinese public policy on fisheries subsidies: Reconciling
trade, environmental and food security stakes. Marine Policy 56:
106-116.
He, J., Chen, J.X. & Cai, C.F. 2016. Comparison of soft and hard
shell crab in nutritional value. Food Research and Development 37:
100-103.
He, J., Wu, X. & Cheng, Y. 2016. Effects of limb autotomy on growth,
feeding and regeneration in the juvenile Eriocheir sinensis. Aquaculture 457: 79-84.
Huang, H., Huang, C., Guo, L., Zeng, C. & Ye, H. 2019. Profiles of
calreticulin and Ca2+ concentration under low temperature and salinity
stress in the mud crab, Scylla paramamosain. PLoS ONE 14(7):
e0220405.
Hungria, D.B., Tavares, C.P.S., Pereira, L.A., da Silva, U.A.T. &
Ostrensky, A. 2017. Global status of production and commercialization of
soft-shell crabs. Aquaculture International 25: 2213-2226.
Keenan, C.P. 1999.
The fourth species of Scylla. In Mud Crab Aquaculture and Biology,
edited by Keenan, C.P. & Blackshaw, A.W. Canberra: Australian Centre for
International Agricultural Research. pp. 49-58.
Lahiri, T., Nazrul, K.S., Rahman, M.A., Saha, D., Egna, H., Wahab, M.A.
& Mamun, A.A. 2021. Boom and bust: Soft‐shell mud crab farming in
south‐east coastal Bangladesh. Aquaculture Research 52(10):
5056-5068.
Lara, R.J., Neogi, S.B., Islam, M.S., Mahmud, Z.H., Yamasaki, S. &
Nair, G.B. 2009. Influence of catastrophic climatic events and human waste on
Vibrio distribution in the Karnaphuli estuary, Bangladesh. EcoHealth 6(2): 279-286.
Laufer, H., Ahl, J.,
Rotllant, G. & Baclaski, B. 2002. Evidence that ecdysteroids and methyl
farnesoate control allometric growth and differentiation in a crustacean. Insect
Biochemistry and Molecular Biology 32: 205-210.
Liu, L., Fu, Y.,
Xiao, L., Liu, X., Fang, W. & Wang, C. 2021. iTRAQ-based quantitative
proteomic analysis of the hepatopancreas in Scylla paramamosain during
the molting cycle. Comparative Biochemistry and Physiology Part D: Genomics
and Proteomics 40: 100870.
Lwin, M.M.N. 2018.
Development of diets for soft-shell mangrove crabs (Scylla spp).
Dissertation. Auburn, Alabama: Auburn University. p. 166 (Unpublished).
Maheswarudu, G., Jose, J., Nair, K.R.M., Arputharaj, M.R., Ramakrishna,
A., Vairamani, A. & Ramamoorthy, N. 2008. Evaluation of the seed production
and grow out culture of blue swimming crab Portunus pelagicus (Linnaeus,
1758) in India. Indian Journal of Geo-Marine Sciences 37: 313-321.
Mirera, O.D. 2011. Trends in exploitation, development and management of
artisanal mud crab (Scylla serrata, Forsskal, 1775) fishery and
small-scale culture in Kenya: An overview. Ocean & Coastal Management 54(11):
844-855.
Muhd-Farouk, H., Jasmani, S. & Ikhwanuddin, M. 2016. Effect of
vertebrate steroid hormones on the ovarian maturation stages of orange mud
crab, Scylla olivacea (Herbst, 1796). Aquaculture 451: 78-86.
Neufeld, D. &
Cameron, J. 1994. Mechanism of the net uptake of water in moulting blue crabs (Callinectes
sapidus) acclimated to high and low salinities. The Journal of
Experimental Biology 188: 11-23.
Quinitio, E.T. & Estepa, F.D.P. 2011. Survival and growth of Mud
crab, Scylla serrata, juveniles subjected to removal or trimming of
chelipeds. Aquaculture 318: 229-234.
Rahi, M.L., Ferdusy, T., Ahmed, S.W., Khan, M.N., Aziz, D. & Salin,
K.R. 2020. Impact of salinity changes on growth, oxygen consumption and
expression pattern of selected candidate genes in the orange mud crab (Scylla
olivacea). Aquaculture Research 5(10): 4290-4301.
Rahman, M.M., Haque, S.M., Galib, S.M., Islam, M.A., Parvez, M.T., Hoque,
M.N., Wahab, M.A., Egna, H. & Brown, C. 2020a. Mud crab fishery in climate
vulnerable coastal Bangladesh: An analysis towards sustainable development. Aquaculture
International 28: 1243-1268.
Rahman, M.M., Haque, S.M., Wahab, A., Egna, H. & Brown, C. 2018.
Soft-shell crab production in coastal Bangladesh: Prospects, challenges and
sustainability. World Aquaculture 49: 43-47.
Rahman, M.M., Islam, M.A., Haque, S.M. & Wahab, A. 2017. Mud crab
aquaculture and fisheries in coastal Bangladesh. World Aquaculture 48(2): 47-52.
Rahman, M.R., Asaduzzaman, M., Zahangir, M.M., Islam, S.R., Nahid,
S.A.A., Jahan, D.A., Mahmud, Y. & Khan, M.N.A. 2020b. Evaluation of limb
autotomy as a promising strategy to improve production performances of mud crab
(Scylla olivacea) in the soft‐shell farming system. Aquaculture
Research 51(6): 2555-2572.
Sarower, M.G., Mahmud-Al-Hasan, M., Rahman, M.S., Hasan, M.M., Ahmmed,
M.K., Ali, M.Y., Giteru, S.G. & Banu, G.R. 2021. Comparative growth and
morphometric assessment between cultures of wild and hatchery-produced mud
crabs. Heliyon 7(9): e07964.
Shelley, C. & Lovatelli, A. 2011. Mud Crab Aquaculture – A
Practical Manual. Rome: Food and Agriculture Organization of the United Nations.
Shelley, C. 2008.
Capture-based aquaculture of mud crabs (Scylla spp.). In Capture-Based
Aquaculture: Global Overview, edited by Lovatelli, A. & Holthus, P.F.
Rome: Food and Agriculture Organization of the United Nationsp. pp.
255-269.
Sujan, M.H.K., Kazal, M.M.H., Ali, M.S. & Rahman, M.S. 2021.
Cost-benefit analysis of mud crab fattening in coastal areas of Bangladesh. Aquaculture
Reports 19: 100612.
Sunarti, Y.,
Soejoedono, R.D., Mayasari, N.L. & Tahya, A.M. 2016. RNA expression of
farnesoic acid O-methyl transferase in mandibular organ of intermolt and
premolt mud crabs Scylla olivacea. Aquaculture, Aquarium,
Conservation & Legislation 9: 270-275.
Tobias-Quinitio,
E.J., Libunao, G.X.S., Parado-Estepa, F.D. & Calpe, A.T. 2015. Soft-Shell
Crab Production Using Hatchery-Reared Mud Crab. Tigbauan, Iloilo: Southeast
Asian Fisheries Development Center, Aquaculture Department and Los Banos, Laguna: Philippine Council for
Agriculture, Aquatic and Natural Resources Research and Development Department
of Science and Technology.
Triajie, H., Andayani, S., Yanuhar, U. & Ekawati, A.W. 2020. Time of
mangrove crabs Scylla paramamosain final premolt stadia (D4) to reach
ecdysis of the male and female growth under different salinity. Eurasian
Journal of Biosciences 14(2): 7889-7897.
Turano, M. 2007. Closed
Blue Crab Shedding Systems: Understanding Water Quality. Raleigh, North
Carolina: North Carolina State University.
Venkatachari, S.A.T.
& Vasantha, N. 1973. Tissue protein levels as a function of salinity
adaptation in the freshwater crab, Barytelphusa guerini H. Milne
edwards. Proceedings of the Indian Academy of Sciences 78: 89-102.
Waiho, K.,
Ikhwanuddin, M., Baylon, J.C., Jalilah, M., Rukminasari, N., Fujaya, Y. &
Fazhan, H. 2021. Moult induction methods in soft‐shell crab production. Aquaculture
Research 52: 4026-4042.
Wu, X., He, J.,
Jiang, X., Liu, Q., Gao, F. & Cheng, Y. 2018. Does the wild‐caught
Chinese mitten crab megalopae perform better than the hatchery‐produced
seed during the juvenile culture? Aquaculture Research 49(5): 2042-2050.
Zhang, M., Zhang,
X., Tran, N.T., Sun, Z., Zhang, X., Ye, H., Zhang, Y., Ma, H., Aweya, J.J.
& Li, S. 2021. Molting alters the microbiome, immune response, and
digestive enzyme activity in mud crab (Scylla paramamosain). Msystems 6: e00917-21.
*Corresponding author; email: latiful.bfri@gmail.com
|