Sains Malaysiana 52(3)(2023): 723-740
http://doi.org/10.17576/jsm-2023-5203-04
Carbon
Sequestration, Biomass and Soil Carbon Pool Estimation in Oak-Dominated Forests
of Hindu-Kush Range Mountains of Pakistan
(Penyerapan Karbon, Biojisim dan Anggaran Takungan Karbon
Tanah di Hutan Didominasi Oak di Banjaran Hindu-Kush di Pakistan)
ATAUR RAHMAN1, NASRULLAH KHAN2,
INAYAT UR RAHMAN3, KISHWAR ALI4 & ACHIM
BRAUNING5
1Laboratory of Plant Ecology, Department of
Botany, University of Malakand, Pakistan-18800
2Laboratory of Plant Ecology, Department of
Botany, University of Malakand, Pakistan-18800
3Department of Botany, Government
Degree College Madyan Swat. 19020
4School of General Education College of North
Atlantic Qatar. P.O Box 24449
5Institute
of Geography, Department of Geography and Geosciences,
Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
Received: 15 June 2021/Accepted: 20
February 2023
Abstract
The
present study aimed to determine the vegetation biomass, soil carbon stocks
and carbon sequestration potential of Oak-dominated forests. Thirty forest
stands having 10 quadrats of 20×20 were randomly sampled. Out of eighteen tree
species, twelve species were associated with Group II followed by Groups I and
III, with eight species each. Quercus dilatata was the only Oak species recorded in all three
groups having maximum density in Group II (56.14). Quercus semecarpifolia accounted the highest proportion
of carbon (235 MgC/ha) in Group II. Quercus baloot, being the dominant species of Group I, is found to accommodate the highest
quantities of BMC (335±43 Mg/ha) for all size classes. The highest nitrogen
content, total nitrogen and carbon-nitrogen ratio were 0.185%, 8.23 and
59.64, respectively, in Group II. The mean bulk density was 1.519 g/cm3
in group III. The highest soil organic carbon (SOC) was recorded in Group II
(2.69%, 119.82 tons/ha). Because of their large aerial scale and high carbon
density, Oak-dominated forests in Group II store most of the carbon. These results
suggest that organic carbon is a major source of forest carbon with significant
climate change mitigation potential that must be conserved and improved by
sustainable forest management.
Keywords:
Bulk density; carbon sequestration; forest carbon; mitigation potential;
vegetation biomass
Abstrak
Kajian ini bertujuan untuk
menentukan biojisim tumbuh-tumbuhan, stok karbon tanah dan potensi penyerapan
karbon hutan yang didominasi Oak. Tiga puluh dirian hutan yang mempunyai 10 kuadrat 20×20
telah diambil secara rawak. Dalam lapan belas spesies pokok, dua belas spesies
dikaitkan dengan Kumpulan II diikuti oleh Kumpulan I dan III, dengan lapan
spesies setiap satu. Quercus
dilatata adalah satu-satunya spesies Oak
yang direkodkan dalam ketiga-tiga kumpulan yang mempunyai ketumpatan maksimum
dalam Kumpulan II (56.14). Quercus
semecarpifolia menyumbang
bahagian tertinggi karbon (235 MgC/ha) dalam Kumpulan II. Quercus baloot, sebagai
spesies dominan Kumpulan I, didapati dapat menampung kuantiti tertinggi BMC
(335±43 Mg/ha) untuk semua kelas saiz. Kandungan nitrogen tertinggi, jumlah nitrogen dan nisbah
karbon-nitrogen adalah 0.185%, 8.23 dan 59.64, masing-masing dalam Kumpulan
II. Purata
ketumpatan pukal ialah 1.519 g/cm3 dalam Kumpulan III. Karbon organik
tanah (SOC) tertinggi dicatatkan dalam Kumpulan II (2.69%, 119.82 tan/ha). Oleh kerana
skala udaranya yang besar dan ketumpatan karbon yang tinggi, hutan yang
didominasi oleh Oak dalam Kumpulan II menyimpan kebanyakan daripada karbon. Keputusan ini
menunjukkan bahawa karbon organik adalah sumber utama karbon hutan dengan
potensi pengurangan perubahan iklim yang ketara yang mesti dipelihara dan
diperbaiki oleh pengurusan hutan yang mampan.
Kata kunci: Biojisim tumbuhan; karbon
hutan; ketumpatan pukal; penyerapan karbon; potensi mitigasi
REFERENCES
Adams,
E.A. 2012. World forest area still on the decline. Europe 989: 1-5.
Agus,
F., Hairiah, K. & Mulyani, A. 2010. Measuring
Carbon Stock in Peat Soils: Practical Guidelines. World Agroforestry Centre
(ICRAF) Southeast Asia Regional Program, Indonesian Centre for Agricultural
Land Resources Research and Development, Bogor, Indonesia.
Ali,
A., Ashraf, M.I., Gulzar, S., Akmal, M. & Ahmad, B. 2019. Estimation of
soil carbon pools in the forests of Khyber Pakhtunkhwa Province, Pakistan. J. For. Res. 31: 2313-2321.
Ali,
F., Khan, N., Ahmad, A. & Khan, A.A. 2019. Structure and biomass carbon of Olea ferruginea forests in the foot
hills of Malakand division, Hindukush range mountains of Pakistan. Acta
Ecologica Sinica 39:
261-266.
Ali,
F., Khan, N., Ali, K. & Khan, I. 2017. Influence of environmental variables
on the distribution of woody species in Muslim graveyards of Malakand Division,
Hindukush Range Mountains of Pakistan. Pak.
J. Bot. 49: 2357-2366.
Ali,
K., Khan, N., Rahman, I.U., Khan, W., Ali, M., Uddin, N. & Nisar, M. 2018.
The ethnobotanical domain of the Swat Valley, Pakistan. J. Ethnobiol. Ethnomed. 14: 1-15.
Ali,
K., Ahmad, H., Khan, N. & Jury, S. 2014. Future of Abies pindrow in Swat district, northern Pakistan. J. For. Res. 25: 211-214.
Canadell,
J.G., Kirschbaum, M.U.F., Kurz, W.A., Sanz, M.J., Schlamadinger, B. &
Yamagata, Y. 2007. Factoring out natural and indirect human effects on
terrestrial carbon sources and sinks. Environ.
Sci. Policy 10: 370-384.
CCTF.
2016. Climate Change and Temperate
Forest. http://globalforestatlas.yale.edu/climate-change/climaye-change-temperate-forests.
Chavan,
B.L. & Rasal, G.B. 2012. Carbon sequestration potential of young Annona
reticulate and Annona squamosa from University campus of Aurangabad. Int. J. Phys. Soc. Sci. 2: 193-198.
Chhabra,
A., Palria, S. & Dadhwal, V.K. 2003. Soil organic carbon pool in Indian
forests. For. Ecol. Manage. 173:
187-199.
Food
and Agriculture Organization (FAO). 2005. Global forest resource assessment
2005: progress towards sustainable forest management. FAO Forestry Paper. p.
147.
Goers,
L., Lawson, J. & Garen, E. 2012. Economic drivers of tropical deforestation
for agriculture. In Managing Forest
Carbon in a Changing Climate, edited by Ashton, M., Tyrrell, M., Spalding,
D. & Gentry, B. Dordrecht: Springer. pp. 305-320.
Hartley,
J. & Marchant, J.F. 2005. Methods of
Determining the Moisture Content of Wood. Forest Resources Research, New
South Wales, Department of Primary Industries, Sydney, Australlia.
Hughes,
A.C. 2017. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624. https://doi.org/https://doi.org/10.1002/ecs2.1624
IPCC.
2007a. Climate Change 2007: The Physical
Science Basis. Summary for Policymakers, Paris.
http://news.bbc.co.uk/2/shared/bsp/hi/pdfs/02_02_07_climatereport.pdf
IPCC.
2007b. Climate change: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the
Fourth Assessment Report of the Intergovernmental Panel on Climate C, edited by Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J.
& Hanson, C.E. p. 16.
Iqbal,
Z., Zeb, A., Abd_Allah, E.F., Rahman, I.U., Khan, S.M., Ali, N., Ijaz, F.,
Anwar, Y., Muzammil, S., Alqarawi, A.A., Hashem, A., Afzal, A., Majid, A.,
Khan, M.A. & Calixto, E.S. 2018. Ecological assessment of plant communities
along the edaphic and topographic gradients of biha valley, District Swat,
Pakistan. Appl. Ecol. Environ. Res. 16. https://doi.org/10.15666/aeer/1605_56115631
Justine,
M.F., Yang, W., Wu, F., Tan, B., Khan, M.N. & Zhao, Y. 2015. Biomass stock
and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze
River. Forests 6: 3665-3682.
Keith,
H., Mackey, B.G. & Lindenmayer, D.B. 2009. Re-evaluation of forest biomass
carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. 106: 11635-11640.
Khan,
I.A. 2000. Comparative Fertility
Evaluation of Agricultural Forest and Rangeland Soils at Hilkot Watershed,
Battal, District Mansehra [Pakistan]. Department of Soil Science,
Agriculturel University, Peshawar, Pakistan. pp. 1-15.
Khattak,
R.A. & Hussain, Z. 2007. Evaluation of soil fertility status and nutrition
of orchards. Soil Environ. 26: 22-32.
Körner,
C., Asshoff, R., Bignucolo, O., Hättenschwiler, S., Keel, S.G., Peláez-Riedl,
S., Pepin, S., Siegwolf, R.T.W. & Zotz, G. 2005. Carbon flux and growth in
mature deciduous forest trees exposed to elevated CO2. Science 309(5739): 1360-1362.
Lal,
R. 2004. Soil carbon sequestration impacts on global climate change and food
security. Science 304(5677):
1623-1627.
Lal,
R. & Lorenz, K. 2012. Carbon sequestration in temperate forests. In Recarbonization of the Biosphere, edited
by Lal, R., Lorenz, K., Hüttl, R., Scheider, B., von Braun, J. Dordrecht:
Springer. pp. 187-201.
Larsson,
T.B., Barbati, A., Bauhus, J., Van Brusselen, J., Lindner, M., Marchetti, M.,
Petriccione, B. & Petersson, H. 2007. The role of forests in carbon cycles,
sequestration, and storage. IUFRO Newsl.
5: 1-10.
Liu,
Y., Li, S., Sun, X. & Yu, X. 2016. Variations of forest soil organic carbon
and its influencing factors in east China. Ann.
For. Sci. 73: 501-511.
Måren,
I.E., Karki, S., Prajapati, C., Yadav, R.K. & Shrestha, B.B., 2015. Facing
north or south: Does slope aspect impact forest stand characteristics and soil
properties in a semiarid trans-Himalayan valley? J. Arid Environ. 121: 112-123.
McCune,
B., Grace, J.B. & Urban, D.L. 2002. Analysis of Ecological Communities. MjM
software design Gleneden Beach, OR, USA.
Myers,
N. 2001. Hotspots Encyclopedia of
Biodiversity 3: 371-381.
Nelson,
D.W. & Sommers, L. 1983. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol.
Prop. 9: 539-579.
Nelson,
D.W. & Sommers, L.E. 1996. Total carbon, organic carbon, and organic
matter. In Methods of Soil Analysis. Part
3. Chemical Method, edited by
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N.,
Tabatabai, M.A., Johnston, C.T. & Summer, M.E. Madison: Soil Science
Society of America and American Society of Agronomy. pp. 961-1010.
https://doi.org/https://doi.org/10.2136/sssabookser5.3.c34
Nizami,
S.M. 2012. The inventory of the carbon stocks in sub tropical forests of
Pakistan for reporting under Kyoto Protocol. J. For. Res. 23: 377-384.
Penman,
J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L.,
Miwa, K., Ngara, T., Tanabe, K., 2003. Good Practice Guidance for Land Use,
Land-Use Change and Forestry. IPCC. Institute for Global Environmental
Strategies.
Philip,
M.S. 1994. Measuring Trees and Forests.
2nd ed. Wallingford: CAB. Int.
Poudel,
A., Sasaki, N. & Abe, I. 2020. Assessment of carbon stocks in oak forests
along the altitudinal gradient: A case study in the Panchase Conservation Area
in Nepal. Glob. Ecol. Conserv. 23:
e01171.
Rahman,
I.U., Afzal, A., Abd_Allah, E.F., Iqbal, Z., Alqarawi, A.A., Hashem, A.,
Calixto, E.S., Ali, N. & Asmarayani, R. 2021. Composition of plant
communities driven by environmental gradients in alpine pastures and cold
desert of Northwestern Himalaya, Pakistan. Pakistan
J. Bot. 53(2): 655-664. https://doi.org/https://dx.doi.org/10.30848/PJB2021-2(35).
Rahman,
I.U., Afzal, A., Iqbal, Z., Bussmann, R.W., Alsamadany, H., Calixto, E.S.,
Shah, G.M., Kausar, R., Shah, M., Ali, N. & Ijaz, F. 2020a. Ecological
gradients hosting plant communities in Himalayan subalpine pastures:
Application of multivariate approaches to identify indicator species. Ecol. Inform. 60: 101162.
https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101162
Rahman,
I.U., Khan, N. & Ali, K. 2017. Classification and ordination of understory
vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan. Sci. Nat. 104: 24.
Rahman,
I.U., Khan, N., Ali, K. & Ahmad, S. 2020b. Vegetation-environment
relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J. For. Res. 31: 185-195.
Rahman,
M.H., Holmes, A.W., Deurer, M., Saunders, S.J., Mowat, A. & Clothier, B.E.
2011. Comparison of three methods to estimate organic carbon in allophanic
soils in New Zealand. 24th Annual FLRC
Workshop. New Zealand: Massey University. p. 4.
Rosenfield,
M.F. & Souza, A.F. 2013. Biomass and carbon in subtropical forests:
Overview of determinants, quantification methods and estimates. Neotrop. Biol. Conserv. 8: 103-110.
Roy,
J., Saugier, B. & Mooney, H.A. 2001. Terrestrial
Global Productivity. San Diego: Academic Press.
Schumacher,
B.A. 2002. Methods for the Determination
of Total Organic Carbon (TOC) in Soils and Sediments. United States
Environmental Protection Agency. Environ. Sci. Div. Natl. Expo. Res. Lab. Las
Vegas.
Semmartin,
M., Di Bella, C. & de Salamone, I.G. 2010. Grazing-induced changes in plant
species composition affect plant and soil properties of grassland mesocosms. Plant Soil 328: 471-481.
Shaheen,
H., Khan, R.W.A., Hussain, K., Ullah, T.S., Nasir, M. & Mehmood, A. 2016.
Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pak. J. Bot. 48: 2351-2357.
Sheikh,
M.A., Kumar, M. & Bussmann, R.W. 2009. Altitudinal variation in soil
organic carbon stock in coniferous subtropical and broadleaf temperate forests
in Garhwal Himalaya. Carbon Balance Manag.
4: 1-6.
Shrestha,
B.P. & Devkota, B.P. 2013. Carbon stocks in the oak and pine forests in
Salyan district, Nepal. Banko Janakari 23: 30-36.
Siddiqui,
M.F., Shaukat, S.S. & Ahmed, M. 2014. Influence of soil chemical
properties, altitude and slope on the distribution and growth of pine tree
species of moist temperate areas of western Himalayan and Hindukush region of
Pakistan. J. Appl. Environ. Biol. Sci. 4:
130-140.
Soto-Pinto,
L., Anzueto, M., Mendoza, J., Ferrer, G.J. & de Jong, B. 2010. Carbon
sequestration through agroforestry in indigenous communities of Chiapas,
Mexico. Agrofor. Syst. 78: 39.
Stern,
N.H. 2007. The Economics of Climate
Change: The Stern Review. Cambridge: Cambridge University Press.
Stockmann,
U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M.,
Minasny, B., McBratney, A.B., de Remy de Courcelles, V., Singh, K., Wheeler,
I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C.,
Jastrow, J.D., Lal, R., Lehmann, J., O'Donnell, A.G., Parton, W.J., Whitehead,
D. & Zimmermann, M. 2013. The knowns, known unknowns and unknowns of
sequestration of soil organic carbon. Agriculture, Ecosystems &
Environment 164: 80-99.
Sundquist,
E.T. 1993. The global carbon dioxide budget. Science, New Series 259(5097): 934-941.
Tagupa,
C., Lopez, A., Caperida, F., Pamunag, G. & Luzada, A. 2010. Carbon dioxide
(CO2) sequestration capacity of Tampilisan Forest. E-International Sci. Res. J. 2: 182-191.
Tilahun,
F. 2022. Impact of land use land cover
change on soil erosion, watershed prioritization and farmer perciption: The
case of Mitka Watershed in Ethiopia. Doctoral dissertation.
(Unpublished).
Vikrant,
K.K. & Chauhan, D.S. 2014. Carbon stock estimation in standing tree of chir
pine and banj oak pure forest in two Van Panchayats forest of Garhwal Himalaya. J. Earth Sci. Clim. Change 5: 1.
Watson,
R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J. & Dokken,
D.J. 2000. Land Use, Land-Use Change and Forestry: A Special Report of the
Intergovernmental Panel on Climate Change. Cambridge: Cambridge University
Press.
Wei,
Y., Li, M., Chen, H., Lewis, B.J., Yu, D., Zhou, L., Zhou, W., Fang, X., Zhao,
W. & Dai, L. 2013. Variation in carbon storage and its distribution by
stand age and forest type in boreal and temperate forests in northeastern
China. PLoS ONE 8: e72201.
Zeb,
A., Iqbal, Z., Khan, S.M., Rahman, I.U., Haq, F., Afzal, A., Qadir, G. &
Ijaz, F. 2020. Species diversity, biological spectrum and phenological
behaviour of vegetation of Biha Valley (Swat), Pakistan. Acta Ecol. Sin. 40: 190-196.
https://doi.org/https://doi.org/10.1016/j.chnaes.2019.05.004
Zhou,
Y.R., Yu, Z.L. & Zhao, S.D. 2000. Carbon storage and budget of major
Chinese forest types. Chinese J. Plant
Ecol. 24: 518.
*Corresponding author; email:
nasrullah.uom@gmail.com
|