Sains Malaysiana 52(3)(2023): 795-803

http://doi.org/10.17576/jsm-2023-5203-09

 

Inhibitory Effects of Nipa Palm Vinegar on the Carbohydrate Hydrolysing Enzymes

(Kesan Perencatan Cuka Nipah pada Enzim Hidrolisis Karbohidrat)

 

FARJANA YASMIN1,4, SWAMINATHAN MEYYAMMAI2, KHAIRUL NIZA ABD RAZAK2, NOZLENA ABDUL SAMAD1, TRI WIDYAWATI3 & NOR ADLIN YUSOFF1,*

 

1Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Penang, Malaysia

2School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

3Pharmacology and Therapeutic Department, Medical Faculty, University of Sumatera Utara, Medan 20155, Indonesia

4Centre for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Korea

 

Received: 6 April 2022/Accepted: 11 January 2023

 

Abstract

Nipa palm vinegar has been traditionally used to manage blood glucose levels by diabetic patients in Southeast Asia. This study was designed to evaluate the efficacy of nipa palm vinegar in inhibiting the activity of carbohydrate hydrolyzing enzymes, α-glucosidase, and α-amylase. In vitro spectrophotometric assays were used to evaluate the inhibitory activity of nipa palm activity against α-glucosidase and α-amylase. To confirm the in vitro findings, an oral starch tolerance test in the normoglycemic Sprague Dawley rat was conducted. Acarbose was used as the positive control for both tests. Nipa palm vinegar at a concentration ranging from 4000 to 62.5 mg/mL inhibited the activity of α-glucosidase and α-amylase in a concentration-dependent manner with the respective IC50 values of 144.50 ± 1.1 mg/mL and 90.30 ± 1.7 mg/mL. It also exerted uncompetitive inhibition against α-glucosidase and competitive inhibition towards α-amylase. In vivo oral starch tolerance test showed a significant (p < 0.05) postprandial glucose-lowering effect of nipa palm vinegar at the doses of 2 mL/kg and 1 mL/kg body weight as compared to the control. In a conclusion, this study demonstrated that nipa palm vinegar suppressed the rise in postprandial glucose levels partly by inhibiting the activity of digestive enzymes.

 

Keywords: α-amylase; α-glucosidase; Diabetes mellitus; nipa palm vinegar; Nypa fruticans Wurmb.

 

Abstrak

Cuka nipah telah digunakan secara tradisi dalam mengawal aras glukosa darah oleh pesakit diabetes di Asia Tenggara. Kajian ini menilai keberkesanan cuka nipah dalam merencat aktiviti enzim-enzim hidrolisis karbohidrat iaituα-glukosidase dan α-amilase. Ujian spektrofotometrik secara in vitro telah digunakan untuk menguji potensi aktiviti perencatan cuka nipah terhadap α-glukosidase dan α-amilase. Bagi mengesahkan penemuan ujian in vitro, ujian toleransi kanji oral secara in vivo pada tikus normoglisemik dijalankan. Keputusan menunjukkan cuka nipah merencat aktiviti α-glukosidase dan α-amilase secara kebergantungan kepekatan dengan nilai IC50 adalah masing-masing adalah144.50 ± 1.1 mg/mL dan90.30 ± 1.7 mg/mL. Cuka nipah juga menunjukkan perencatan tidak kompetitif terhadapα-glukosidase dan perencatan kompetitif terhadap α-amilase. Ujian toleransi kanji oral secara in vivo menunjukkan cuka nipah pada dos 2 mL/kg dan 1 mL/kg berat badan mampu menurunkan aras glukosa postprandial secara signifikan dibandingkan dengan kawalan (p<0.05). Kesimpulannya, kajian ini membuktikan cuka nipah menghalang kenaikan aras glukosa darah postprandial, sebahagiannya dengan merencat aktiviti enzim pencernaan.

 

Kata kunci: α-amilase; α-glukosidase; cuka nipah; kencing manis; Nypa fruticans Wurmb.

 

REFERENCES

Assefa, S.T., Yang, E-Y., Chae, S-Y., Song, M., Lee, J., Cho, M-C. & Jang, S. 2019. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants 9: 2-19.

AquaPhoenix Scientific, Inc. (APS) 2015. Safety Data Sheet Vinegar. S25623. Oct. 2014 (Revised May 2015).  

Beh, B.K., Mohamad, N.E., Yeap, S.K., Ky, H., Boo, S.K., Chua, J.Y.H., Tan, S.W., Ho, W.Y., Sharifuddin, S.A., Long, K. & Alitheen, N.B. 2017. Anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and nipa vinegar on high-fat-diet-induced obese mice. Scientific Reports 7: 6664.

Bumrungpert, A., Pavadhgul, P., Chongsuwat, R. & Komindr, S. 2020. Nutraceutical improves glycemic control, insulin sensitivity, and oxidative stress in hyperglycemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Natural Product Communications 15: 1-11.

Chandran, A., Abdullah, M.N. & Abdul, F. 2020. National Diabetes Registry Report 2013-2019. Putrajaya: Ministry of Health Malaysia.

Chang, J., Han, S.E., Paik, S.S. & Kim, Y.J. 2020. Corrosive esophageal injury due to a commercial vinegar beverage in an adolescent. Clinical Endoscopy 53: 366-369.

Chatatikun, M. & Kwanhian, W. 2020. Phenolic profile of nipa palm vinegar and evaluation of its antilipidemic activities. Evidence-Based Complementary and Alternative Medicine 2020: 6769726.

Chen, Y., Li, Q., Han, Y., Ji, H., Gu, M., Bian, R., Ding, W., Cheng, J. & Mu, Y. 2020. Vildagliptin versus α-glucosidase inhibitor as an add-on to metformin for type 2 diabetes: Subgroup analysis of the China prospective diabetes study. Diabetes Res. 11: 247-257.

Davies, M.J., Aroda, V.R., Collins, B.S., Gabbay, R.A., Green, J., Maruthur, N.M., Rosas, S.E., Del Prato, S., Mathieu, C., Mingrone, G., Rossing, P., Tankova, T., Tsapas, A. & Buse, J.B. 2022. Management of hyperglycemia in type 2 diabetes, 2022: A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45(11): 2753-2786.

Dirir, A.M., Daou, M., Yousef, A.F. & Yousef, LF. 2022. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 21: 1049-1079.

Ganesan, K. & Xu, B. 2019. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 24: 2556.

Hershon, K.S., Hirsch, B.R. & Odugbesan, O. 2019. Importance of postprandial glucose in relation to A1C and cardiovascular disease. Clinical Diabetes 37(3): 250-259.

Hiyoshi, T., Fujiwara, M. & Yao, Z. 2019. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes. Journal of Biomedical Research 33: 1-16.

Johnston, C.S., Steplewska, I., Long, C.A., Harris, L.N. & Ryals, R.H. 2010. Examination of the antiglycemic properties of vinegar in healthy adults. Annals of Nutrition and Metabolism 56(1): 74-79.

Laaroussi, H., Ferreira-Santos, P., Genisheva, Z., Bakour, M., Ousaaid, D., Teixera, J.A. & Lyoussi, B. 2021. Unravelling the chemical composition, antioxidant, α-amylase and α-glucosidase inhibition of Moroccan propolis. Food Bioscience 42: 101160.

Liatis, S., Grammatikou, S., Poulia, K.A., Perrea, D., Makrilakis, K., Diakoumopoulou, E. & Katsilambros, N. 2010. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. European Journal of Clinical Nutrition 64: 727-732.

Marunaka, Y. 2018. The proposal of molecular mechanisms of weak organic acids intake-induced improvement of insulin resistance in diabetes mellitus via elevation of interstitial fluid pH. International Journal of Molecular Sciences 19(10): 3244-3268.

Mohamad, N.E., Yeap, S.K., Lim, K.L., Yusof, H.M., Beh, B.K., Tan, S.W., Ho, W.Y., Sharifuddin, S.A., Jamaluddin, A., Long, K. & Nik-Abd, N.M.A. 2015. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chinese Medicine 10: 1-10.

Noh, Y.H., Lee, D., Bin-Lee, Y.W. & Pyo, Y.H. 2020. In vitro inhibitory effects of organic acids identified in commercial vinegars on α-amylase and α-glucosidase. Preventive Nutrition and Food Science 25: 319.

Östman, E., Granfeldt, Y., Persson, L. & Björck, I. 2005. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. European Journal of Clinical Nutrition 59(9): 983-988.

Ouertani, A., Neifar, M., Ouertani, R., Masmoudi, A.S. & Cherif, A. 2019. Effectiveness of enzyme inhibitors in biomedicine and pharmacotherapy. Advances in Tissue Engineering & Regenerative Medicine: Open Access 5(3): 85-90. 

Perumpuli, P.A.B.N. & Dilrukshi, D.M.N. 2022. Vinegar: A functional ingredient for human health. International Food Research Journal 29(5): 959-974.

Shishehbor, F., Mansoori, A. & Shirani, F. 2017. Vinegar consumption can attenuate postprandial glucose and insulin responses: A systematic review and meta-analysis of clinical trials. Diabetes Research and Clinical Practice 127: 1-9.

Tang, H., Zhang, J. & Song, Y. 2017. Adverse effects and safety of SGLT2 inhibitor use among patients with Type 2 diabetes: Findings from RCT evidence. North American Journal of Medicine and Science 10(2): 78-82.

Tangkiatkumjai, M., Boardman, H. & Walker, D.M. 2020. Potential factors that influence usage of complementary and alternative medicine worldwide: A systematic review. BMC Complementary Medicine and Therapies 20: 363-378.

UBC Animal Care Guidelines. 2014. Collection of Small Amounts of Blood from Tail Tip Microsampling in Rats (SOP:  ACC‐2014‐Tech13). http:// https://animalcare.ubc.ca/animal-care-committee/sops-policies-and-guidelines

Wickramaratne, M.N., Punchihewa, J.C. & Wickramaratne, D.B. 2016. In-vitro alpha-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complementary and Alternative Medicine 16(1): 466-470.

Wihansah, R.S., Arief, I.I. & Batubara, I. 2018. Anti-diabetic potency and characteristics of probiotic goat-milk yogurt supplemented with roselle extract during cold storage. Tropical Journal of Animal Science 41: 191-199.

 

*Corresponding author; email: noradlinyusoff@usm.my

 

 

 

 

 

previous