Sains Malaysiana
52(3)(2023): 863-876
http://doi.org/10.17576/jsm-2023-5203-14
The Establishment of In Vitro Human Induced
Pluripotent Stem Cell-Derived Neurons
(Penubuhan Neuron Berpunca Sel Stem Pluripoten In Vitro Manusia)
IZYAN
MOHD IDRIS1,2, FAZLINA NORDIN1,*,
NUR JANNAIM MUHAMAD2, JULAINA ABDUL JALIL2, FATIMAH DIANA
AMIN NORDIN2, ROSNANI MOHAMED2, ADIRATNA MAT RIPEN2,
GEE JUN TYE3, WAN SAFWANI WAN KAMARUL ZAMAN4, MUHAMMAD
DAIN YAZID1 & MIN HWEI NG1
1Centre
for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan
Malaysia Medical Centre (UKMMC), 56000 Cheras, Kuala Lumpur, Federal Territory,
Malaysia
2Institute
for Medical Research (IMR), National Institutes of Health (NIH), Ministry of
Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170 Shah
Alam, Selangor Darul Ehsan, Malaysia
3Institute
for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM),
11800 USM, Penang, Malaysia
4Department
of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603,
Kuala Lumpur, Federal Territory, Malaysia
Received: 23 August 2022/Accepted: 3 February 2023
Abstract
Induced pluripotent stem cells (iPSCs) have been
generated using different reprogramming strategies. Lentiviruses remain a
strategic method for cell reprogramming as it is highly efficient in gene
transfer. The latest fourth-generation lentiviral packaging systems claimed to
be efficient and safe. However, modifications made to enhance safety of
lentiviral vectors have been shown to affect vector performance. In this study,
we established that the fourth-generation lentiviral packaging system can
produce high-titre lentiviruses with high-transduction efficiencies.
Subsequently, the robustness and reproducibility of generating iPSCs from adult
human dermal fibroblasts were tested using these lentiviruses. The use of
fourth-generation lentiviruses consistently generates iPSCs with similar efficiency
and quality in different primary cell lines. This study demonstrated that the
human-derived iPSCs can be maintained using mitomycin-C inactivated feeder
cells. The iPSC clones highly expressed key pluripotency markers and can
spontaneously differentiate into cells from the three embryonic germ layers.
The iPSCs generated were able to differentiate into neural stem cell lineages,
producing cells expressing Nestin and Sox2 as well as able to further
differentiate into neurons with more than 70% efficiency. The data demonstrated
that the use of the fourth-generation lentiviral packaging to produce
lentiviruses for iPSCs generation is robust and reproducible as it can generate
iPSCs from different adult dermal fibroblasts with the potential to
differentiate into neural stem cells and neurons. The use of safer lentiviral
packaging systems combined with established vector plasmids will help to
expedite the generation of iPSCs for clinical applications.
Keywords: Induced pluripotent stem cells; lentivirus;
neural stem cells; neurons; reprogramming
Abstrak
Sel induk pluripoten teraruh (iPS) telah dihasilkan menggunakan strategi pengaturcaraan semula yang berbeza. Lentivirus kekal sebagai kaedah strategik untuk pengaturcaraan semula sel kerana ia sangat cekap dalam pemindahan gen. Sistem pembungkusan lentivirus generasi keempat terkini dikatakan lebih cekap dan selamat. Walau bagaimanapun, pengubahsuaian yang dibuat untuk meningkatkan keselamatan vektor lentivirus telah ditunjukkan boleh menjejaskan prestasi vektor. Dalam kajian ini, kami mendapati bahawa sistem pembungkusan lentivirus generasi keempat boleh menghasilkan lentivirus dengan titer tinggi serta kecekapan transduksi yang tinggi dan seterusnya menguji keteguhan dan kebolehulangan penjaanan sel iPS daripada fibroblas kulit manusia menggunakan lentivirus ini. Penggunaan lentivirus generasi keempat secara tekal menjana sel iPS dengan kecekapan dan kualiti yang sama dalam talian sel primer yang berbeza.
Kami menunjukkan bahawa iPS yang dihasilkan di atas sel penyuap yang dinyahaktifkan menggunakan mitomisin-C yang berasal daripada manusia boleh menyokong dan mengekalkan sel iPS. Klon sel iPS yang diperoleh mengekspresikan penanda pluripotensi utama dan boleh secara spontan membezakan menjadi sel daripada tiga lapisan sel embrio. Sel iPS yang diperoleh dapat dibezakan kepada keturunan sel induk saraf yang mengekspresikan Nestin dan Sox2 dan boleh matang menjadi neuron dengan kecekapan lebih daripada 70%. Data kami menunjukkan bahawa penggunaan pembungkusan lentivirus generasi keempat untuk menghasilkan lentivirus untuk penjanaan sel iPS adalah teguh dan boleh dihasilkan semula kerana ia boleh menjana sel iPS daripada fibroblas kulit dewasa yang berbeza dengan potensi untuk membeza menjadi sel stem saraf dan neuron. Penggunaan sistem pembungkusan lentivirus
yang lebih selamat dalam gabungan dengan plasmid vektor yang mantap akan membantu mempercepatkan penjanaan sel iPS untuk terjemahan klinikal.
Kata kunci: Lentivirus; neuron; pengaturcaraan semula; sel induk pluripoten terjana; sel induk saraf
REFERENCES
Aasen, T., Raya, A., Barrero, M.J., Consiglio, A.,
Gonzalez, F., Vaseena, R., Bilić, J., Pekarik, V., Tiscornia, G., Edel,
M., Boué, S. & Belmonte, J.C.I. 2008. Efficient and rapid generation of
induced pluripotent stem cells from human keratinocytes. Nature.Com. 26:
1276-1284. https://doi.org/10.1038/nbt.1503
Andrews, P.W., Baker, D., Benvinisty, N., Miranda, B.,
Bruce, K., Brüstle, O., Choi, M., Choi, Y.M., Crook, J.M., de Sousa, P.A.,
Dvorak, P., Freund, C., Firpo, M., Furue, M.K., Gokhale, P., Ha, H.Y., Han, E.,
Haupt, S., Healy, L., … Zhou, Q. 2015. Points to consider in the development of
seed stocks of pluripotent stem cells for clinical applications: International
Stem Cell Banking Initiative (ISCBI). Regenerative Medicine 10: 1-44. https://doi.org/10.2217/rme.14.93
Aradi, I., Santhakumar, V. & Soltesz, I. 2004.
Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing
rates. Journal of Neurophysiology 91(6): 2849-2858.
https://doi.org/10.1152/jn.00916.2003
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L.,
Vivian, N. & Lovell-Badge, R. 2003. Multipotent cell lineages in early
mouse development depend on SOX2 function. Genes and Development 17(1):
126-140. https://doi.org/10.1101/gad.224503
Bell, S., Hettige, N., Silveira, H., Peng, H., Wu, H.,
Jefri, M., Antonyan, L., Zhang, Y., Zhang, X. & Ernst, C. 2019.
Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an
effective model of forebrain neural progenitor cells and mature neurons. Bio
Protocol 9(5): e3188. https://doi.org/10.21769/bioprotoc.3188
Ferreira, M.V., Cabral, E.T. & Coroadinha, A.S.
2021. Progress and perspectives in the development of lentiviral vector
producer cells. Biotechnology Journal 16(1): 1-12.
https://doi.org/10.1002/biot.202000017
Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. &
Hasegawa, M. 2009. Efficient induction of transgene-free human pluripotent stem
cells using a vector based on Sendai virus, an RNA virus that does not
integrate into the host genome. Proceedings of the Japan Academy Series B:
Physical and Biological Sciences 85(8): 348-362.
https://doi.org/10.2183/pjab.85.348
González, F., Boué, S. & Belmonte, J.C.I. 2011.
Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nature
Reviews Genetics 12(4): 231-242. https://doi.org/10.1038/nrg2937
Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K.,
Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M. &
Schöler, H.R. 2008. Pluripotent stem cells induced from adult neural stem cells
by reprogramming with two factors. Nature 454(7204): 646-650.
https://doi.org/10.1038/nature07061
Kudva, Y.C., Ohmine, S., Greder, L.V., Dutton, J.R.,
Armstrong, A., de Lamo, J.G., Khan, Y.K., Thatava, T., Hasegawa, M., Fusaki,
N., Slack, J.M.W. & Ikeda, Y. 2012. Transgene-free disease-specific induced
pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem
Cells Translational Medicine 1(6): 451-461.
https://doi.org/10.5966/sctm.2011-0044
Li, C., Klco, J.M., Helton, N.M., George, D.R., Mudd,
J.L., Miller, C.A., Lu, C., Fulton, R., O’Laughlin, M., Fronick, C., Wilson,
R.K. & Ley, T.J. 2015. Genetic heterogeneity of induced pluripotent stem
cells: Results from 24 clones derived from a single C57BL/6 mouse. PLoS ONE 10(3):
e0120585. https://doi.org/10.1371/journal.pone.0120585
Liao, J., Wu, Z., Wang, Y., Cheng, L., Cui, C., Gao,
Y., Chen, T., Rao, L., Chen, S., Jia, N., Dai, H., Xin, S., Kang, J., Pei, G.
& Xiao, L. 2008. Enhanced efficiency of generating induced pluripotent stem
(iPS) cells from human somatic cells by a combination of six transcription
factors. Cell Research 18(5): 600-603.
https://doi.org/10.1038/cr.2008.51
Liu, Q., Du, J., Fan, J., Li, W., Guo, W., Feng, H.
& Lin, J. 2018. Generation and characterization of induced pluripotent stem
cells from mononuclear cells in schizophrenic patients. Cell Journal 21(2):
161-168. https://doi.org/10.22074/cellj.2019.5871
Löhle, M., Hermann, A., Glaß, H., Kempe, A., Schwarz,
S.C., Kim, J.B., Poulet, C., Ravens, U., Schwarz, J., Schöler, H.R. &
Storch, A. 2012. Brief report: Differentiation efficiency of induced
pluripotent stem cells depends on the number of reprogramming factors. Stem
Cells 30(3): 570-579. https://doi.org/10.1002/stem.1016
Malik, N. & Rao, M.S. 2013. A review of the
methods for human iPSC derivation. Methods in Molecular Biology 997(5):
23-33. https://doi.org/10.1007/978-1-62703-348-0_3
Merten, O.W., Hebben, M. & Bovolenta, C. 2016.
Production of lentiviral vectors. Molecular Therapy - Methods and Clinical
Development 3(December 2015): 16017. https://doi.org/10.1038/mtm.2016.17
Nagasaka, R., Matsumoto, M., Okada, M., Sasaki, H.,
Kanie, K., Kii, H., Uozumi, T., Kiyota, Y., Honda, H. & Kato, R. 2017.
Visualization of morphological categories of colonies for monitoring of effect
on induced pluripotent stem cell culture status. Regenerative Therapy 6:
41-51. https://doi.org/10.1016/j.reth.2016.12.003
Nethercott, H.E., Brick, D.J. & Schwartz, P.H.
2011. Derivation of induced pluripotent stem cells by lentiviral transduction. Methods
in Molecular Biology 767: 67-85.
https://doi.org/10.1007/978-1-61779-201-4_6
Noisa, P., Ramasamy, T.S., Lamont, F.R., Yu, J.S.L.,
Sheldon, M.J., Russell, A., Jin, X. & Cui, W. 2012. Identification and
characterisation of the early differentiating cells in neural differentiation
of human embryonic stem cells. PLoS ONE 7(5): 37129.
https://doi.org/10.1371/journal.pone.0037129
Pauwels, K., Gijsbers, R., Toelen, J., Schambach, A.,
Willard-Gallo, K., Verheust, C., Debyser, Z. & Herman, P. 2009.
State-of-the-art lentiviral vectors for research use: Risk assessment and
biosafety recommendations. Current Gene Therapy 9(6): 459-474.
https://doi.org/10.2174/156652309790031120
Richards, M. 2003. Comparative evaluation of various
human feeders for prolonged undifferentiated growth of human embryonic stem
cells. Stem Cells 21(5): 546-556.
https://doi.org/10.1634/stemcells.21-5-546
Štefková, K., Procházková, J. & Pacherník, J.
2015. Alkaline phosphatase in stem cells. Stem Cells International 2015:
628368. https://doi.org/10.1155/2015/628368
Sullivan, S., Stacey, G.N., Akazawa, C., Aoyama, N.,
Baptista, R., Bedford, P., Bennaceur Griscelli, A., Chandra, A., Elwood, N.,
Girard, M., Kawamata, S., Hanatani, T., Latsis, T., Lin, S., Ludwig, T.E.,
Malygina, T., Mack, A., Mountford, J. C., Noggle, S., … Song, J. 2018. Quality
control guidelines for clinical-grade human induced pluripotent stem cell
lines. Regenerative Medicine 13(7): 859-866. https://doi.org/10.2217/rme-2018-0095
Takahashi, K. & Yamanaka, S. 2006. Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast cultures by
defined factors. Cell 126(4): 663-676. https://doi.org/10.1016/j.cell.2006.07.024
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M.,
Ichisaka, T., Tomoda, K. & Yamanaka, S. 2007. Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell 131(5):
861-872. https://doi.org/10.1016/J.CELL.2007.11.019
Teotia, P., Sharma, S., Airan, B. & Mohanty, S.
2016. Feeder & basic fibroblast growth factor-free culture of human
embryonic stem cells: Role of conditioned medium from immortalized human
feeders. Indian Journal of Medical Research 144(DECEMBER): 838-851.
https://doi.org/10.4103/ijmr.IJMR_424_15
Teotia, P., Mohanty, S., Kabra, M., Gulati, S. &
Airan, B. 2015. Enhanced reprogramming efficiency and kinetics of induced
pluripotent stem cells derived from human duchenne muscular dystrophy. PLoS
Currents https://doi.org/10.1371/currents.md.a77c2f0516a8cb4809ffad5963342905
Willmann, C.A., Hemeda, H., Pieper, L.A., Lenz, M.,
Qin, J., Joussen, S., Sontag, S., Wanek, P., Denecke, B., Schüler, H.M., Zenke,
M. & Wagner, W. 2013. To clone or not to clone? Induced pluripotent stem
cells can be generated in bulk culture. PLoS ONE 8(5): e65324. https://doi.org/10.1371/journal.pone.0065324
Wislet-Gendebien, S., Leprince, P., Moonen, G. &
Rogister, B. 2003. Regulation of neural markers nestin and GFAP expression by
cultivated bone marrow stromal cells. Journal of Cell Science 116(16):
3295-3302. Company of Biologists Ltd. https://doi.org/10.1242/jcs.00639
Wu, X., Wakefield, J.K., Liu, H., Xiao, H., Kralovics,
R., Prchal, J.T. & Kappes, J.C. 2000a. Development of a novel
trans-lentiviral vector that affords predictable safety. Molecular Therapy 2(1):
47-55. https://doi.org/10.1006/mthe.2000.0095
Wu, X., Wakefield, J.K., Liu, H., Xiao, H., Kralovics,
R., Prchal, J.T. & Kappes, J.C. 2000b. Development of a novel
trans-lentiviral vector that affords predictable safety. Molecular Therapy 2(1):
47-55. https://doi.org/10.1006/MTHE.2000.0095
Yang, Y.H., Zhang, R.Z., Cheng, S., Xu, B., Tian, T.,
Shi, H.X., Xiao, L. & Chen, R.H. 2018. Generation of induced pluripotent
stem cells from human epidermal keratinocytes. Cellular Reprogramming 20(6):
356-364. https://doi.org/10.1089/cell.2018.0035
Yoshida, Y. & Yamanaka, S. 2017. Induced
pluripotent stem cells 10 years later. Circulation Research 120(12):
1958-1968. https://doi.org/10.1161/CIRCRESAHA.117.311080
Yu, J., Vodyanik, M.A., Smuga-Otto, K.,
Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti,
V., Stewart, R., Slukvin, I.I. & Thomson, J.A. 2007. Induced pluripotent
stem cell lines derived from human somatic cells. Science 318(5858):
1917-1920. https://doi.org/10.1126/science.1151526
Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X.,
Li, Y., Guo, X., Cao, G., Chen, S., Hao, L., Chan, Y.C., Ng, K.M., Cy Ho, J.,
Wieser, M., Wu, J., Redl, H., Tse, H.F., Grillari, J., Grillari-Voglauer, R., …
Esteban, M.A. 2011. Generation of induced pluripotent stem cells from urine. Am.
Soc. Nephrol. https://doi.org/10.1681/ASN.2011010106
Zhou, W. & Freed, C.R. 2009. Adenoviral gene
delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem
Cells 27(11): 2667-2674. https://doi.org/10.1002/stem.201
Zhou, Y., Kang, G., Wen, Y., Briggs, M., Sebastiano,
V., Pederson, R. & Chen, B. 2018. Do induced pluripotent stem cell
characteristics correlate with efficient in vitro smooth muscle cell
differentiation? A comparison of three patient-derived induced pluripotent stem
cell lines. Stem Cells and Development 27(20): 1438-1448.
https://doi.org/10.1089/scd.2018.0031
*Corresponding author; email:
nordinf@ppukm.ukm.edu.my
|