Sains Malaysiana 52(3)(2023): 863-876

http://doi.org/10.17576/jsm-2023-5203-14

 

The Establishment of In Vitro Human Induced Pluripotent Stem Cell-Derived Neurons

(Penubuhan Neuron Berpunca Sel Stem Pluripoten In Vitro Manusia)

 

IZYAN MOHD IDRIS1,2, FAZLINA NORDIN1,*, NUR JANNAIM MUHAMAD2, JULAINA ABDUL JALIL2, FATIMAH DIANA AMIN NORDIN2, ROSNANI MOHAMED2, ADIRATNA MAT RIPEN2, GEE JUN TYE3, WAN SAFWANI WAN KAMARUL ZAMAN4, MUHAMMAD DAIN YAZID1 & MIN HWEI NG1

 

1Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

2Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor Darul Ehsan, Malaysia

3Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 USM, Penang, Malaysia

4Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 23 August 2022/Accepted: 3 February 2023

 

Abstract

Induced pluripotent stem cells (iPSCs) have been generated using different reprogramming strategies. Lentiviruses remain a strategic method for cell reprogramming as it is highly efficient in gene transfer. The latest fourth-generation lentiviral packaging systems claimed to be efficient and safe. However, modifications made to enhance safety of lentiviral vectors have been shown to affect vector performance. In this study, we established that the fourth-generation lentiviral packaging system can produce high-titre lentiviruses with high-transduction efficiencies. Subsequently, the robustness and reproducibility of generating iPSCs from adult human dermal fibroblasts were tested using these lentiviruses. The use of fourth-generation lentiviruses consistently generates iPSCs with similar efficiency and quality in different primary cell lines. This study demonstrated that the human-derived iPSCs can be maintained using mitomycin-C inactivated feeder cells. The iPSC clones highly expressed key pluripotency markers and can spontaneously differentiate into cells from the three embryonic germ layers. The iPSCs generated were able to differentiate into neural stem cell lineages, producing cells expressing Nestin and Sox2 as well as able to further differentiate into neurons with more than 70% efficiency. The data demonstrated that the use of the fourth-generation lentiviral packaging to produce lentiviruses for iPSCs generation is robust and reproducible as it can generate iPSCs from different adult dermal fibroblasts with the potential to differentiate into neural stem cells and neurons. The use of safer lentiviral packaging systems combined with established vector plasmids will help to expedite the generation of iPSCs for clinical applications.

 

Keywords: Induced pluripotent stem cells; lentivirus; neural stem cells; neurons; reprogramming

 

Abstrak

Sel induk pluripoten teraruh (iPS) telah dihasilkan menggunakan strategi pengaturcaraan semula yang berbeza. Lentivirus kekal sebagai kaedah strategik untuk pengaturcaraan semula sel kerana ia sangat cekap dalam pemindahan gen. Sistem pembungkusan lentivirus generasi keempat terkini dikatakan lebih cekap dan selamat. Walau bagaimanapun, pengubahsuaian yang dibuat untuk meningkatkan keselamatan vektor lentivirus telah ditunjukkan boleh menjejaskan prestasi vektor. Dalam kajian ini, kami mendapati bahawa sistem pembungkusan lentivirus generasi keempat boleh menghasilkan lentivirus dengan titer tinggi serta kecekapan transduksi yang tinggi dan seterusnya menguji keteguhan dan kebolehulangan penjaanan sel iPS daripada fibroblas kulit manusia menggunakan lentivirus ini. Penggunaan lentivirus generasi keempat secara tekal menjana sel iPS dengan kecekapan dan kualiti yang sama dalam talian sel primer yang berbeza. Kami menunjukkan bahawa iPS yang dihasilkan di atas sel penyuap yang dinyahaktifkan menggunakan mitomisin-C yang berasal daripada manusia boleh menyokong dan mengekalkan sel iPS. Klon sel iPS yang diperoleh mengekspresikan penanda pluripotensi utama dan boleh secara spontan membezakan menjadi sel daripada tiga lapisan sel embrio. Sel iPS yang diperoleh dapat dibezakan kepada keturunan sel induk saraf yang mengekspresikan Nestin dan Sox2 dan boleh matang menjadi neuron dengan kecekapan lebih daripada 70%. Data kami menunjukkan bahawa penggunaan pembungkusan lentivirus generasi keempat untuk menghasilkan lentivirus untuk penjanaan sel iPS adalah teguh dan boleh dihasilkan semula kerana ia boleh menjana sel iPS daripada fibroblas kulit dewasa yang berbeza dengan potensi untuk membeza menjadi sel stem saraf dan neuron. Penggunaan sistem pembungkusan lentivirus yang lebih selamat dalam gabungan dengan plasmid vektor yang mantap akan membantu mempercepatkan penjanaan sel iPS untuk terjemahan klinikal.

Kata kunci: Lentivirus; neuron; pengaturcaraan semula; sel induk pluripoten terjana; sel induk saraf

 

REFERENCES

Aasen, T., Raya, A., Barrero, M.J., Consiglio, A., Gonzalez, F., Vaseena, R., Bilić, J., Pekarik, V., Tiscornia, G., Edel, M., Boué, S. & Belmonte, J.C.I. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature.Com. 26: 1276-1284. https://doi.org/10.1038/nbt.1503

Andrews, P.W., Baker, D., Benvinisty, N., Miranda, B., Bruce, K., Brüstle, O., Choi, M., Choi, Y.M., Crook, J.M., de Sousa, P.A., Dvorak, P., Freund, C., Firpo, M., Furue, M.K., Gokhale, P., Ha, H.Y., Han, E., Haupt, S., Healy, L., … Zhou, Q. 2015. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regenerative Medicine 10: 1-44. https://doi.org/10.2217/rme.14.93

Aradi, I., Santhakumar, V. & Soltesz, I. 2004. Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates. Journal of Neurophysiology 91(6): 2849-2858. https://doi.org/10.1152/jn.00916.2003

Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N. & Lovell-Badge, R. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development 17(1): 126-140. https://doi.org/10.1101/gad.224503

Bell, S., Hettige, N., Silveira, H., Peng, H., Wu, H., Jefri, M., Antonyan, L., Zhang, Y., Zhang, X. & Ernst, C. 2019. Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an effective model of forebrain neural progenitor cells and mature neurons. Bio Protocol 9(5): e3188. https://doi.org/10.21769/bioprotoc.3188

Ferreira, M.V., Cabral, E.T. & Coroadinha, A.S. 2021. Progress and perspectives in the development of lentiviral vector producer cells. Biotechnology Journal 16(1): 1-12. https://doi.org/10.1002/biot.202000017

Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy Series B: Physical and Biological Sciences 85(8): 348-362. https://doi.org/10.2183/pjab.85.348

González, F., Boué, S. & Belmonte, J.C.I. 2011. Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nature Reviews Genetics 12(4): 231-242. https://doi.org/10.1038/nrg2937

Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M. & Schöler, H.R. 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204): 646-650. https://doi.org/10.1038/nature07061

Kudva, Y.C., Ohmine, S., Greder, L.V., Dutton, J.R., Armstrong, A., de Lamo, J.G., Khan, Y.K., Thatava, T., Hasegawa, M., Fusaki, N., Slack, J.M.W. & Ikeda, Y. 2012. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Translational Medicine 1(6): 451-461. https://doi.org/10.5966/sctm.2011-0044

Li, C., Klco, J.M., Helton, N.M., George, D.R., Mudd, J.L., Miller, C.A., Lu, C., Fulton, R., O’Laughlin, M., Fronick, C., Wilson, R.K. & Ley, T.J. 2015. Genetic heterogeneity of induced pluripotent stem cells: Results from 24 clones derived from a single C57BL/6 mouse. PLoS ONE 10(3): e0120585. https://doi.org/10.1371/journal.pone.0120585

Liao, J., Wu, Z., Wang, Y., Cheng, L., Cui, C., Gao, Y., Chen, T., Rao, L., Chen, S., Jia, N., Dai, H., Xin, S., Kang, J., Pei, G. & Xiao, L. 2008. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Research 18(5): 600-603. https://doi.org/10.1038/cr.2008.51

Liu, Q., Du, J., Fan, J., Li, W., Guo, W., Feng, H. & Lin, J. 2018. Generation and characterization of induced pluripotent stem cells from mononuclear cells in schizophrenic patients. Cell Journal 21(2): 161-168. https://doi.org/10.22074/cellj.2019.5871

Löhle, M., Hermann, A., Glaß, H., Kempe, A., Schwarz, S.C., Kim, J.B., Poulet, C., Ravens, U., Schwarz, J., Schöler, H.R. & Storch, A. 2012. Brief report: Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors. Stem Cells 30(3): 570-579. https://doi.org/10.1002/stem.1016

Malik, N. & Rao, M.S. 2013. A review of the methods for human iPSC derivation. Methods in Molecular Biology 997(5): 23-33. https://doi.org/10.1007/978-1-62703-348-0_3

Merten, O.W., Hebben, M. & Bovolenta, C. 2016. Production of lentiviral vectors. Molecular Therapy - Methods and Clinical Development 3(December 2015): 16017. https://doi.org/10.1038/mtm.2016.17

Nagasaka, R., Matsumoto, M., Okada, M., Sasaki, H., Kanie, K., Kii, H., Uozumi, T., Kiyota, Y., Honda, H. & Kato, R. 2017. Visualization of morphological categories of colonies for monitoring of effect on induced pluripotent stem cell culture status. Regenerative Therapy 6: 41-51. https://doi.org/10.1016/j.reth.2016.12.003

Nethercott, H.E., Brick, D.J. & Schwartz, P.H. 2011. Derivation of induced pluripotent stem cells by lentiviral transduction. Methods in Molecular Biology 767: 67-85. https://doi.org/10.1007/978-1-61779-201-4_6

Noisa, P., Ramasamy, T.S., Lamont, F.R., Yu, J.S.L., Sheldon, M.J., Russell, A., Jin, X. & Cui, W. 2012. Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS ONE 7(5): 37129. https://doi.org/10.1371/journal.pone.0037129

Pauwels, K., Gijsbers, R., Toelen, J., Schambach, A., Willard-Gallo, K., Verheust, C., Debyser, Z. & Herman, P. 2009. State-of-the-art lentiviral vectors for research use: Risk assessment and biosafety recommendations. Current Gene Therapy 9(6): 459-474. https://doi.org/10.2174/156652309790031120

Richards, M. 2003. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21(5): 546-556. https://doi.org/10.1634/stemcells.21-5-546

Štefková, K., Procházková, J. & Pacherník, J. 2015. Alkaline phosphatase in stem cells. Stem Cells International 2015: 628368. https://doi.org/10.1155/2015/628368

Sullivan, S., Stacey, G.N., Akazawa, C., Aoyama, N., Baptista, R., Bedford, P., Bennaceur Griscelli, A., Chandra, A., Elwood, N., Girard, M., Kawamata, S., Hanatani, T., Latsis, T., Lin, S., Ludwig, T.E., Malygina, T., Mack, A., Mountford, J. C., Noggle, S., … Song, J. 2018. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regenerative Medicine 13(7): 859-866. https://doi.org/10.2217/rme-2018-0095

Takahashi, K. & Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4): 663-676. https://doi.org/10.1016/j.cell.2006.07.024

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5): 861-872. https://doi.org/10.1016/J.CELL.2007.11.019

Teotia, P., Sharma, S., Airan, B. & Mohanty, S. 2016. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders. Indian Journal of Medical Research 144(DECEMBER): 838-851. https://doi.org/10.4103/ijmr.IJMR_424_15

Teotia, P., Mohanty, S., Kabra, M., Gulati, S. & Airan, B. 2015. Enhanced reprogramming efficiency and kinetics of induced pluripotent stem cells derived from human duchenne muscular dystrophy. PLoS Currents https://doi.org/10.1371/currents.md.a77c2f0516a8cb4809ffad5963342905

Willmann, C.A., Hemeda, H., Pieper, L.A., Lenz, M., Qin, J., Joussen, S., Sontag, S., Wanek, P., Denecke, B., Schüler, H.M., Zenke, M. & Wagner, W. 2013. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture. PLoS ONE 8(5): e65324. https://doi.org/10.1371/journal.pone.0065324

Wislet-Gendebien, S., Leprince, P., Moonen, G. & Rogister, B. 2003. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. Journal of Cell Science 116(16): 3295-3302. Company of Biologists Ltd. https://doi.org/10.1242/jcs.00639

Wu, X., Wakefield, J.K., Liu, H., Xiao, H., Kralovics, R., Prchal, J.T. & Kappes, J.C. 2000a. Development of a novel trans-lentiviral vector that affords predictable safety. Molecular Therapy 2(1): 47-55. https://doi.org/10.1006/mthe.2000.0095

Wu, X., Wakefield, J.K., Liu, H., Xiao, H., Kralovics, R., Prchal, J.T. & Kappes, J.C. 2000b. Development of a novel trans-lentiviral vector that affords predictable safety. Molecular Therapy 2(1): 47-55. https://doi.org/10.1006/MTHE.2000.0095

Yang, Y.H., Zhang, R.Z., Cheng, S., Xu, B., Tian, T., Shi, H.X., Xiao, L. & Chen, R.H. 2018. Generation of induced pluripotent stem cells from human epidermal keratinocytes. Cellular Reprogramming 20(6): 356-364. https://doi.org/10.1089/cell.2018.0035

Yoshida, Y. & Yamanaka, S. 2017. Induced pluripotent stem cells 10 years later. Circulation Research 120(12): 1958-1968. https://doi.org/10.1161/CIRCRESAHA.117.311080

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. & Thomson, J.A. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858): 1917-1920. https://doi.org/10.1126/science.1151526

Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X., Li, Y., Guo, X., Cao, G., Chen, S., Hao, L., Chan, Y.C., Ng, K.M., Cy Ho, J., Wieser, M., Wu, J., Redl, H., Tse, H.F., Grillari, J., Grillari-Voglauer, R., … Esteban, M.A. 2011. Generation of induced pluripotent stem cells from urine. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2011010106

Zhou, W. & Freed, C.R. 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27(11): 2667-2674. https://doi.org/10.1002/stem.201

Zhou, Y., Kang, G., Wen, Y., Briggs, M., Sebastiano, V., Pederson, R. & Chen, B. 2018. Do induced pluripotent stem cell characteristics correlate with efficient in vitro smooth muscle cell differentiation? A comparison of three patient-derived induced pluripotent stem cell lines. Stem Cells and Development 27(20): 1438-1448. https://doi.org/10.1089/scd.2018.0031

 

*Corresponding author; email: nordinf@ppukm.ukm.edu.my

 

 

 

 

 

previous