Sains Malaysiana
52(3)(2023): 877-885
http://doi.org/10.17576/jsm-2023-5203-15
Nanoemulsion of Turmeric in
VCO Inhibit the Progressivity of Lung
Fibrosis due to Cigarette Exposure
(Nanoemulsi
Kunyit dalam VCO Merencat Perkembangan Fibrosis Paru-Paru Akibat
Pendedahan Rokok)
NUR
AISAH IBRAHIMIYAH1*, GWENNY ICHSAN PRABOWO2, LINA
LUKITASARI2 & RADITYA WEKA NUGRAHENI3
1Master
Program of Basic Medical Science, Faculty of Medicine, Airlangga University,
Surabaya, East Java, Indonesia
2Department
of Medical Physiology and Biochemistry, Faculty of Medicine, Airlangga
University, Surabaya, East Java, Indonesia
3Pharmacy
Study Program, Faculty of Health Sciences, Muhammadiyah Malang
UniversityMalang, East Java, Indonesia
Received:
23 August 2022/Accepted: 3 February 2023
Abstract
Pulmonary
fibrosis is a form of lung damage caused by chronic inflammation. One of the
causes is cigarette smoke exposure, which can
damage cilia and epithelial cells, that is able to stimulate
oxidative stress as well.
The inflammatory response by inflammatory cells triggers release of inflammatory mediators,
for example, TNF-α. Increased levels of TNF-α indicate a high
inflammatory process and a high risk of pulmonary fibrosis. Nanoemulsion of
turmeric extract in VCO contains curcumin, which can suppress the secretion and expression of TNF-α through several
pathways. This study is aimed to analyze the inhibitory effect of turmeric extract nanoemulsion in VCO on
pulmonary fibrosis in an inflammatory way. In this study, 40 white rats were
used and divided into five groups; K0 was negative controls group, K1 was
exposed to smoke from two
cigarettes/day for 42 days, K2 received
0.3 mL dose of nanoemulsion + cigarette exposure, K3 received
0.6 mL dose of nanoemulsion + cigarette exposure and K4 received
dexamethasone (0.2
mg/kgBW) + cigarette exposure.
Furthermore, plasma TNF-α levels taken from cardiac blood and
histopathological preparations (HE, MA) were made from the right lung. One-way
ANOVA test was used to analyze plasma TNF-α levels, the Kruskal-Wallis test
was used to analyze fibrosis degree scoring based on Aschroft Modification Scale and
the correlation test was analyzed by Spearman test. The results showed that 0.3
mL of
turmeric extract nanoemulsion in VCO had the best inhibitory effect on progressivity tissue damage and pulmonary fibrosis.
Keywords:
Chronic respiratory disease; cigarette; curcumin; nanoemulsion
Abstrak
Fibrosis
paru adalah satu bentuk kerosakan paru-paru yang disebabkan oleh keradangan
kronik. Salah satu puncanya ialah pendedahan kepada asap rokok. Keradangan
akibat asap rokok boleh merosakkan silia dan sel epitelium dan ia juga boleh
merangsang tekanan oksidatif. Tindak balas keradangan oleh sel radang
mencetuskan pembebasan mediator keradangan, contohnya, TNF-α. Peningkatan
tahap TNF-α menunjukkan proses keradangan yang tinggi dan risiko tinggi
fibrosis paru. Nanoemulsi ekstrak kunyit dalam VCO mengandungi kurkumin yang
dapat menyekat rembesan dan pengekspresan TNF-α melalui
beberapa laluan. Kajian ini bertujuan untuk menganalisis potensi perencatan nanoemulsi ekstrak kunyit dalam VCO pada fibrosis paru melalui
keradangan. Dalam kajian ini, 40 ekor tikus putih telah digunakan dan
dibahagikan kepada lima kumpulan dengan K0 adalah kumpulan kawalan
negatif, K1 didedahkan kepada asap
daripada dua batang rokok/hari selama 42 hari, K2 menerima 0.3 mL dos nanoemulsi + asap rokok, K3 menerima 0.6 mL dos nanoemulsi + asap
rokok dan K4 menerima deksametason (0.2 mg/kgBB) + asap
rokok. Tambahan pula, kadar TNF-α plasma diambil
daripada darah jantung dan persediaan histopatologi (HE, MA) dibuat daripada
paru-paru kanan. Ujian ANOVA sehala digunakan untuk menganalisis kadar TNF-α plasma, ujian Kruskal-Wallis digunakan untuk menganalisis pemarkahan darjah fibrosis berdasarkan skala pengubahsuaian Aschorft dan ujian korelasi dianalisis
dengan ujian Spearman. Keputusan menunjukkan bahawa 0.3 mL nanoemulsi ekstrak kunyit
dalam VCO mempunyai kesan perencatan terbaik terhadap kemajuan kerosakan jaringan dan fibrosis paru.
Kata
kunci: Kurkumin; nanoemulsi; penyakit pernafasan kronik; rokok
REFERENCES
Aggarwal, B.B., Prasad, S., Reuter, S., Kannappan, R., Yadev, V.R., Park, B., Kim, J.H., Gupta, S.C., Phromnoi, K., Sundaram, C., Prasad, S., Chaturvedi, M.M. & Sung, B. 2011. Identification of level
anti-inflammatory agents from Ayuverdic medicine for prevention of chronic
disease. Curr. Drug Targets 12:
1595-1653.
Aggarwal, B.B., Gupta, S.C. & Sung, B. 2013. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory
biomarkers. British Journal of
Pharmacology 169: 1672-1692.
Bae, M., Park, Y.K. & Lee, J.Y. 2018. Food components
with antifibrotic activity and implication in the prevention of liver disease. Journal of Nutritional Biochemistry 55: 1-11.
Bagchi, A. 2012. Extraction of curcumin. Journal of
Enviromental Science Toxicology and Food Technology 1(3): 1-16.
Balasubramanyam, K., Varier, R.A.,
Altaf, M., Swaminathan, V., Siddappa, N.B., Ranga, U. & Kundu, T.K. 2004.
Curcumin, a novel p300/CREB-binding protein-specific inhibitor of
acetyltransferase, represses the acetylation of histone/nonhistone proteins and
histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279(49): 51163-51711.
Basyigit, I., Sahin, M., Sahin, D., Yildiz, F., Boyaci, H.,
Sirvanci, S. & Ercan, F. 2010. Anti-inflammatory effect of montelukast on
smoke-induced lung injury in rats. Multidisciplinary
Respiratory Medicine 5: 1-9.
Cas, D.M. & Ghidoni, R. 2019. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 9: 1-14.
Cho, J.W., Lee, K.S. & Kim, C.W. 2007.
Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α, as well
as cyclin E in TNF-α, treated HaCat cells; NF-kB and MAPKs as potential
upstream targets. International Journal of Molecular Medicine 19(3): 469-474.
Damin, S.H., Alam, N. & Sarro, D. 2017. Characteristics
of virgin coconut oil (VCO) harvested at various altitudes where it grows. Journal of Argotekbis 5(04): 431-440.
Desdiani, Iris Rengganis, Samsuridjal Djauzi, Agus Setiyono, Mohammad Sadikin, Sri Widia A Jusman, Nurjati Siregar, Suradi & Putri C.
Eyanoer. 2020. Green tea extract reduces the area of
rat lung fibrosis. Indonesian
Pathology Magazine 29(1): 15-24.
Dorey, A., Scheerlinck, P., Nguyen, H. & Albertson, B.G.T. 2020. Acute and chronic carbon monoxide toxicity from
tobacco smoking. Military Medicine 185(1): 61-67.
Eghbaliferiz, S. & Iranshahi, M. 2016. Prooxidant
activity of polyphenols, flavonoids, anthocyanins, and carotenoids: An updated review of mechanism and catalyzing metals. Phytotherapy Research30(9): 1379-1391.
Ercan, E., Ilbamis, M.S. & Tasci, U. 2021. Effect of smoking on acute hypobaric hypoxia tolerance. Hamidiye Med J. 2(1): 37-42.
Flora, G., Gupta, D. & Tiwari, A. 2013. Nanocurcumin: A promising therapeutic advancement over native curcumin. Crit. Rev. The Drug Carrier Syst. 30(4): 331-336.
Gawda, E.W., Wrzos, P.C.,
Zarobkiewicz, M.K., Chlapek, K. & Jedrych, B.J.
2020. Lung histological alterations in rats exposed to cigarette smoke and
electronic cigarette vapor. Experimental
and Therapeutic Medicine 19: 2826-2832.
Gupta, S.C., Prasad, S., Kim, J.H., Patchva,
S., Webb, L.J., Priyadarsini, I.K. & Aggarwal, B.B. 2011.
Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28(12): 1937-1955.
Huang, R., Liu, Y., Xiong,
Y., Wu, H., Wang, G., Sun, Z., Chen, J., Yan, X., Pan, Z., Xia, J.,
Zhang, Z., Wang, J. & Wu, C. 2016. Curcumin protects against liver fibrosis by attenuating
infiltration of grh1i monocytes through inhibition of monocyte chemoattractant
protein. Discov. Med. 21(118): 447-457.
Hubner, R.H., Gitter, W., El Mokhtari, N.E., Mathiak, M.,
Both, M. & Bolte, H. 2008. Standardized quantification of pulmonary
fibrosis in histological samples. Biotechnique 44: 507-517.
Jacob, A., Wu, R., Zhou, M. & Wang, P. 2007.
Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Research2007: 89369.
Jain, K.S., Rains, J., Croad, J., Larson B. & Jones, K. 2009. Curcumin supplementation lowers TNF-α,
IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and
blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin
in diabetic rats. Antioxidant & Redox
Signaling 11(2): 241-249.
Klopfleisch, R. 2013. Multiparametric and semiquantitative
scoring systems for the evaluation of mouse model histopathology. BMC Vet. Res. 9(123): 1-15.
Lopez, A.G., Thiago, S.F.,
Renata, T.N., Manuella, L., Karla, M.P.P., Ari, M.S., Ricardo, M.B., Antonio,
J.R.S., Samuel, S.V. & Luis, C.P. 2013.
The antioxidant action of propolis on mouse warp exposed to short-term
cigarette smoke. Bioorganic and Medicinal
Chemistry 21(24): 7570-7577.
Lugg, S.T., Scott, A., Parekh, D., Naidu, B. & Thickett, D.R. 2021. Cigarette smoke exposure and alveolar
macrophages: A mechanism for
lung disease. Thorax77(1): 94-101.
Maharaj, S., Shimbori, C. & Kolb, M. 2013. Fibrocytes in
pulmonary fibrosis: A brief synopsis. Eur. Respir. Rev. 22: 552-557.
Maulidiyah, N. & Amin, M. 2015. Respiratory biomarkers in
lung disease. Respiration Journal 1(2): 67-71.
Medzhitov, R. 2010.
Inflammation 2010: New adventures of
an old flame. Cells 140(6): 771-776.
Napanggala, A. 2015. Chronic obstructive pulmonary disease
with pleural effusion and grade I hypertension. Medula Journal 4(2): 1-6.
Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu,
C. & Xu, R. 2021. Anti-inflammatory effects of curcumin in the
inflammatory diseases: Status, limitations, and countermeasures. Drug Design, Development and Therapy 15:
4503-4525.
Profita, M., Sala, A., Bonanno, A., Riccobono, L., Ferraro,
M., La Grutta, S., Albano, G.D., Montalbano, A.M. & Gjomarkaj, M. 2010. Chronic obstructive pulmonary disease and
neutrophile infiltration: Role of cigarette
smoke and cyclooxygenase products. Am. J. Physiol. Lung Cell Mol. Physiol. 298: 261-269.
Ramli, N., Rifa'i, Y., Wunas, J. & Yustianus, R.R. 2019. Curcumin
content in an extract of some rhizomes from the Zingiberaceae family. Journal of Pharmaceutical and Medicinal Sciences 4(1): 15-19.
Rasool, S.T., Alavala, R.R., Kulandaivelu, U. &
Sreeharsa, N. 2020. Non-invasive delivery of nano emulsified sesame oil extract
of turmeric attenuates lung inflammation. Pharmaceutics 12(1206): 1-15.
Salawati, L. 2016. The relationship of smoking with the
degree of chronic obstructive pulmonary disease. Syiah Kuala Medical Journal 16(3): 165-169.
Sari, T.P., Mann, B., Kumar, R., Singh, R.R.B., Rajan, S.,
Minaxi, B. & Athira, S. 2015. Preparation and characterization of
nanoemulsion encapsulating curcumin. Food
Hydrocolloid 43: 540-546.
Sephapour, S., Selamat, J., Manap, M.Y.A., Khatib, A. & Razis, A.F.A. 2018. Comparative analysis of the chemical
composition, antioxidant activity, and quantitative characterization of some
phenolic compounds in selected herbs and spices in different solvent extraction
systems. Molecules 23(402): 1-7.
Sullivan, D.E., Ferris, M., Nguyen, H., Abboud, E. & Brody, A.R. 2009. TNF-a induces tgfb1 expression in lung
fibroblasts at the transcriptional level via AP-1 activation. J. Cell Mol. Med. 13(08): 1866-1876.
Supriono, Pratomo, B. & Praja, D.I. 2018. Effect of
curcumin on nf-kb levels and degree of liver fibrosis in liver fibrosis rats. Journal of Internal Medicine 5(4):
174-183.
Todd, N.W., Luzina, I.G. & Atamas, S.P. 2012. Cellular
and molecular mechanisms of pulmonary fibrosis. Fibrogenesis and Tissue Repair 5(11): 1-24.
Vasconcelos, L.H.C., Silva, M.C.C., Costa, A.C., de Oliveira, G.A., de Souza, I.L.L., Righetti, R.F., Queiroga, F.R., Cardoso, G.A., Silva, A.S., da Silva, P.M., Vieira, G.C., de F.L.C., Tibério, I., Madruga, M.S., de A Cavalcante, F. & da Silva, B.A. 2020.
Virgin coconut oil supplementation prevent airway hyperreactivity of guinea
pigs with chronic llergic lung inflammation by antioxidant mechanism. Oxidative Medicine and Cellular Longevity 2020: 5148503.
Wua, S.T., Sun, J.C., Lee, K. & Sun, Y. 2010. Docking
prediction for tumor necrosis factor- and five herbal inhibitors. Int. J. Eng. Sci. Technol. 2: 4263-4277.
Wulandari, R.D., Hadisaputro, S. & Suhartono. 2013.
Various factors related to the incidence of pulmonary function disorders in the
workspace (a case study of electroplating home industry workers in Talang
sub-district, Tegal district. Indonesian
Environmental Health Journal 12(1): 94-98.
Wuyts, W.A., Agostini, C., Antoniou, K.M., Bouros, D., Chambers, R.C., Cottin, V., Egan, J.J., Lambrecht, B.N., Lories, R., Parfrey, H., Prasse, A., Robalo-Cordeiro, C., Verbeken, E., Verschakelen, J.A., Wells, A.U. & Verleden, G.M. 2013. The pathogenesis of pulmonary fibrosis: A moving target. European
Respiratory Journal 41(5): 1207-1218.
Yordi, E.G., Perez, E.M., Matos, M.J. & Villares, E.U. 2012. Antioxidant and prooxidant effects of
polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being, and Health. https://cdn.intechopen.com/pdfs/29974.pdf
Yu, H. & Huang, Q. 2012. Improving the oral
bioavailability of curcumin using novel organelle-based nanoemulsions. J. Agric. Food Chem. 30(60): 5373-5379.
Yudhawati, R. & Prasetyo, Y.D. 2018. Immunopathogenesis
of chronic obstructive pulmonary disease. Journal
of Respiration 4(1): 19-25.
Zeldin, C.D., Lenane, C.W., Chulada, P., Bradbury, A.,
Scarborough, P.E., Roggli, V., Langenbach, R. & Schwartz,
D.A. 2001. Airway inflammation and
responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial
lipopolysaccharide. American Journal of
Respiratory Cell and Molecular Biology 25: 457-464.
Zhang, D., Huang, C., Yang, C., Liu, R.J., Wang, J., Niu, J. & Bromme, D. 2011. Antifibrotic effects of curcumin are
associated with overexpression of cathepsins and bleomycin-treated mice and
human fibroblasts. Respiratory Research 12(1): 1-12.
*Corresponding author; email: nuraisahibrahim28@gmail.com
|