Sains Malaysiana 52(3)(2023): 993-1009
http://doi.org/10.17576/jsm-2023-5203-22
A Comparative Study of Deep
Learning Algorithms in Univariate and Multivariate Forecasting of the Malaysian
Stock Market
(Kajian Perbandingan
Algoritma Pembelajaran Mendalam dalam Peramalan Univariat dan Multivariat
Pasaran Saham Malaysia)
MOHD.RIDZUAN AB.
KHALIL1 & AZURALIZA ABU BAKAR2,*
1Malaysian Administrative Modernisation and Management
Planning Unit (MAMPU), Federal Government Administrative Centre, 62502
Putrajaya, Federal Territory, Malaysia
2Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 8 August 2022/Accepted: 28 December 2022
Abstract
As part of a
financial institution, the stock market has been an essential factor in the
growth and stability of the national economy. Investment in the stock market is
risky because of its price complexity and unpredictable nature. Deep learning
is an emerging approach in stock market prediction modeling that can learn the
non-linearity and complexity of stock market data. To date, not much study on
stock market prediction in Malaysia employs the deep learning prediction model,
especially in handling univariate and multivariate data. This study aims to
develop a univariate and multivariate stock market forecasting model using
three deep learning algorithms and compare the performance of those models. The
algorithm intends to predict the close price of the Malaysian stock market
using the Axiata Group Berhad and Petronas Gas Berhad from Bursa Malaysia,
listed in Kuala Lumpur Composite Index (KLCI) datasets. Three deep learning
algorithms, Multilayer Perceptron (MLP), Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM), are used to develop the prediction model.
The deep learning models achieved the highest accuracy and outperformed the
baseline models in short and long-term forecasts. It also shows that LSTM
possessed the best deep learning model for the Malaysian stock market,
achieving the lowest prediction error among the other models. Deep learning
demonstrates the ability to handle univariate and multivariate data in
preserving important information, thus forecasting the stock market. This
finding is relatively significant as deep learning works well with
high-dimensional datasets.
Keywords: CNN;
deep learning; LSTM; MLP; multivariate; stock forecasting; time series;
univariate
Abstrak
Pasaran saham merupakan sebahagian daripada institusi kewangan yang menjadi faktor penting dalam pertumbuhan dan kestabilan sesebuah ekonomi negara. Pelaburan dalam pasaran saham adalah sangat berisiko disebabkan oleh perubahan harganya yang rumit dan sifatnya yang sukar untuk diramal. Pembelajaran mendalam adalah satu pendekatan baharu yang semakin menonjol dalam ramalan pasaran saham kerana ia mampu mempelajari data pasaran saham yang tidak linear dan rumit. Sehingga kini, tidak banyak kajian yang dilakukan mengenai ramalan pasaran saham di Malaysia menggunakan pendekatan pembelajaran mendalam khususnya yang melibatkan pendekatan data univariat dan multivariat. Penyelidikan ini dijalankan untuk membangunkan model ramalan pasaran saham univariat dan multivariat menggunakan tiga algoritma pembelajaran mendalam dan seterusnya membuat perbandingan prestasi antara model tersebut. Ia akan meramal harga tutup di pasaran saham Malaysia menggunakan data saham Axiata Group Berhad dan Petronas Gas Berhad dari Bursa Malaysia dan turut tersenarai di dalam Indeks Komposit Kuala Lumpur (KLCI). Tiga algoritma pembelajaran mendalam iaitu Multilayer Perceptron (MLP), Convolutional
Neural Network (CNN) dan Long Short-Term
Memory (LSTM) digunakan untuk membangunkan model ramalan. Hasil uji kaji menunjukkan model pembelajaran mendalam mencapai ketepatan yang tinggi dan mengatasi kesemua model dasar bagi ramalan untuk tempoh jangka pendek dan panjang. Ia juga menunjukkan LSTM merupakan model pembelajaran mendalam yang terbaik untuk pasaran saham Malaysia dengan ralat ramalan yang paling rendah berbanding kesemua model lain. Pembelajaran mendalam menunjukkan keupayaan yang ketara dalam membuat ramalan pasaran saham menggunakan data univariat dan multivariat. Penemuan ini adalah signifikan dengan keupayaan pembelajaran mendalam terutamanya dalam mempelajari set data yang bersifat multidimensi dan mempunyai fitur yang banyak.
Kata kunci: CNN;
LSTM; MLP; pembelajaran dalam; multivariat; ramalan saham; siri masa; univariat
REFERENCES
Abu-Mostafa, Y.S. &
Atiya, A.F. 1996. Introduction to financial forecasting. Applied
Intelligence 6(3): 205-213.
Al-Mashhadani, A.F.S.,
Hishan, S.S., Awang, H. & Alezabi, K.A.A. 2021. Forecasting Malaysian Stock
Price using Artificial Neural Networks (ANN). Journal of Contemporary Issues
in Business and Government 27(1): 4466-4482.
Azam, M., Haseeb, M.,
Samsi, A.B. & Raji, J.O. 2016. Stock market development and economic
growth: Evidences from Asia-4 countries. International Journal of Economics
and Financial Issues 6(3): 1200-1208.
Bustos, O. &
Pomares-Quimbaya, A. 2020. Stock market movement forecast: A systematic review. Expert Systems with Applications 156: 113464.
Cao, J., Li, Z. & Li,
J. 2019. Financial time series
forecasting model based on CEEMDAN and LSTM. Physica A: Statistical
Mechanics and Its Applications 519: 127-139.
Chung, H. & Shin, K.S.
2020. Genetic algorithm-optimized multi-channel convolutional neural network
for stock market prediction. Neural Computing and Applications 32(12):
7897-7914.
Fister, D., Mun, J.C.,
Jagric, V. & Jagric, T. 2019. Deep learning for stock market trading: A
superior trading strategy? Neural Network World 29(3): 151-171.
Gandhmal, D.P. &
Kumar, K. 2019. Systematic analysis and review of stock market prediction
techniques. Computer Science Review 34: 100190.
Hafizah Bahaludin &
Saiful Hafizah Jaaman. 2013. Peta pasaran saham Malaysia. Journal of Quality
Measurement and Analysis 9(2): 27-36.
He, K., Zhang, X., Ren, S.
& Sun, J. 2016. Deep residual learning for image recognition. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2016-December. pp. 770-778.
Hiransha, M.,
Gopalakrishnan, E.A., Menon, V.K. & Soman, K.P. 2018. NSE stock market
prediction using deep-learning models. Procedia Computer Science 132(Iccids): 1351-1362.
Hoseinzade, E. &
Haratizadeh, S. 2019. CNNpred: CNN-based
stock market prediction using a diverse set of variables. Expert Systems
with Applications 129: 273-285.
Ismail Fawaz, H.,
Forestier, G., Weber, J., Idoumghar, L. & Muller, P.A. 2019. Deep learning
for time series classification: A review. Data Mining and Knowledge
Discovery 33(4): 917-963.
Jiang, W. 2021.
Applications of deep learning in stock market prediction: Recent progress. Expert
Systems with Applications 184(March 2020): 115537.
Krizhevsky, B.A.,
Sutskever, I. & Hinton, G.E. 2012. ImageNet classification with deep
convolutional neural networks. Communications of the ACM 60(6): 84-90.
Lee, M.C., Chang, J.W.,
Hung, J.C. & Chen, B.L. 2021. Exploring the effectiveness of deep neural
networks with technical analysis applied to stock market prediction. Computer
Science and Information Systems 18(2): 401-418.
Liu, H. & Song, B.
2018. Stock price trend prediction model based on deep residual network and
stock price graph. Proceedings - 2018 11th International Symposium on Computational
Intelligence and Design 2: 328-331.
Liu, H. & Long, Z.
2020. An improved deep learning model for predicting stock market price time
series. Digital Signal Processing: A Review Journal 102: 102741.
Livieris, I.E., Pintelas,
E. & Pintelas, P. 2020. A CNN–LSTM model for gold price time-series
forecasting. Neural Computing and Applications 32(23): 17351-17360.
Maiti, A. & Shetty,
D.P. 2020. Indian stock market prediction using deep learning. IEEE Region
10 Annual International Conference, Proceedings/TENCON 2020-Novem:
pp. 1215-1220.
Masoud, N.M.H. 2013. The
impact of stock market performance upon economic growth. International
Journal of Economics and Financial Issues 3(4): 788-798.
Mehtab, S. & Sen, J.
2020. Stock Price Prediction Using Convolutional Neural Networks on a
Multivariate Timeseries. https://doi.org/10.36227/techrxiv.15088734.v1
Mehtab, S., Sen, J. &
Dasgupta, S. 2020. Robust analysis of stock price time series using CNN and
LSTM-based deep learning models. Proceedings of the 4th International
Conference on Electronics, Communication and Aerospace Technology. pp.
1481-1486.
Mehtab, S., Sen, J. &
Dutta, A. 2021. Stock price prediction using machine learning and LSTM-based
deep learning models. Communications in Computer and Information Science 1366: 88-106.
Nabipour, M., Nayyeri, P.,
Jabani, H., Mosavi, A., Salwana, E. & Shahab, S. 2020. Deep learning for
stock market prediction. Entropy 22(8): 840.
Nikou, M., Mansourfar, G.
& Bagherzadeh, J. 2019. Stock price prediction using DEEP learning
algorithm and its comparison with machine learning algorithms. Intelligent
Systems in Accounting, Finance and Management 26(4): 164-174.
Pak, M. & Kim, S.
2018. A review of deep learning in image recognition. Proceedings of the
2017 4th International Conference on Computer Applications and Information
Processing Technology, CAIPT 2017 2018-Janua. pp. 1-3.
Pan, W., Li, J. & Li,
X. 2020. Portfolio learning based on deep learning. Future Internet 12(11): 1-13.
Pradhan, R.P. 2018.
Development of stock market and economic growth: The G-20 evidence. Eurasian
Economic Review 8(2): 161-181.
Rama Krishna, V.,
Subhamastan Rao, T., Narayana, G.V.S. & Rachapudi, V. 2020. A model for
stock price predictions using deep learning techniques. International
Journal of Advanced Trends in Computer Science and Engineering 9(5):
8266-8271.
Selvin, S., Vinayakumar,
R., Gopalakrishnan, E.A., Menon, V.K. & Soman, K.P. 2017. Stock price
prediction using LSTM, RNN, and CNN-sliding window model. 2017 International
Conference on Advances in Computing, Communications, and Informatics, ICACCI
2017 2017-Janua. pp. 1643-1647.
Sezer, O.B., Gudelek, M.U.
& Ozbayoglu, A.M. 2020. Financial time series forecasting with deep
learning: A systematic literature review: 2005-2019. Applied Soft Computing
Journal 90: 106181.
Shen, J. & Shafiq,
M.O. 2020. Short-term stock market price trend prediction using a comprehensive
deep learning system. Journal of Big Data 7: Article No. 66.
Sismanoglu, G., Onde,
M.A., Kocer, F. & Sahingoz, O.K. 2019. Deep learning based forecasting in
stock market with big data analytics. 2019 Scientific Meeting on
Electrical-Electronics and Biomedical Engineering and Computer Science. pp.
1-4.
Soon, G.K., On, C.K.,
Rayner, A., Patricia, A. & Teo, J. 2018. A CIMB stock price prediction case
study with feedforward neural network and recurrent neural network. Journal
of Telecommunication, Electronic and Computer Engineering 10(3-2): 89-94.
Yiing, A.T.S. & Thim, C.K. 2015. Prediction of Bursa Malaysia Stock Index using autoregressive integrated moving average and artificial neural network. Malaysia Statistics Conference (MyStats 2015)
1997: 95.
Yong, B.X., Abdul Rahim,
M.R. & Abdullah, A.S. 2017. A stock
market trading system using deep neural network. Communications in Computer
and Information Science 751: 356-364.
Zeroual, A., Harrou, F.,
Dairi, A. & Sun, Y. 2020. Deep learning methods for forecasting COVID-19
time-Series data: A comparative study. Chaos, Solitons and Fractals 140:
110121.
Zhao, Y. & Khushi, M.
2020. Wavelet Denoised-ResNet CNN and LightGBM method to predict forex rate of
change. IEEE International Conference on Data Mining Workshops, ICDMW 2020-November.
pp. 385-391.
Zulqarnain, M., Ghazali,
R., Ghouse, M.G., Hassim, Y.M.M. & Javid, I. 2020. Predicting financial
prices of stock market using recurrent convolutional neural networks. International
Journal of Intelligent Systems and Applications 12(6): 21-32.
*Corresponding author;
email: azuraliza@ukm.edu.my
|