Sains Malaysiana 52(4)(2023): 1231-1242

http://doi.org/10.17576/jsm-2023-5204-15

 

Synthesis, Characterisation and Binding Evaluation of New 6-Amidinoindole Compound as the Potential Heme Binder

(Sintesis, Pencirian dan Penilaian Pengikatan Sebatian 6-Amidinoindol Baharu sebagai Pengikat Heme Berpotensi)

 

NORAISYAH ABDUL KADIR JILANI1, NATSUHISA OKA2,3, KAORI ANDO2 & SITI AISHAH HASBULLAH1,*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

3Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan

 

Received: 11 March 2022/Accepted: 6 March 2023

 

Abstract

In this study, the new compound 6-amidinoindole 3 were synthesized by hydrogenating the amidoxime unit in a high yield. The compound was characterized by FTIR, 1H NMR, 13C NMR and ESI-MS. The binding of the compound towards heme was evaluated using absorption spectroscopy. The studies found that the association constant (log K) is 3.90. The binding strength indicated the ligand's possibility to interact significantly with heme and acted as a binder to the malaria parasite. In silico hemozoin docking was performed to gain insight into the mode of action. The docked score is -8.3 kcal/mol, indicated the possible inhibition of hemozoin. This study could serve as the basis for the future development of malaria sensors and antiplasmodial activity.

 

Keywords: Amidino; heme binding; indole; malarial molecular target; synthesis

 

Abstrak

Dalam kajian ini, sebatian 6-amidinoindol 3 baharu telah disintesis melalui penghidrogenan unit amidoksim dan hasil yang tinggi telah diperoleh. Sebatian ini telah dicirikan oleh FTIR, 1H NMR, 13C NMR dan ESI-MS. Pengikatan sebatian terhadap heme telah dinilai menggunakan spektroskopi serapan. Kajian mendapati bahawa pemalar pengikatan (log K) ialah 3.90. Kekuatan pengikatan menunjukkan kebolehan ligan berinteraksi dengan heme secara signifikan dan juga bertindak sebagai pengikat kepada parasit malaria. Mengedok hemozoin secara in silico dilakukan untuk mendapatkan gambaran lebih dalam tentang cara kerja. Dok skor ialah -8.3 kcal/mol yang menunjukkan kemungkinan berlakunya perencatan hemozoin. Kajian ini boleh menjadi asas untuk pembangunan sensor malaria dan aktiviti antiplasmodial pada masa hadapan.

 

Kata kunci: Amidino; indol; pengikatan heme; sasaran molekul malaria; sintesis

 

REFERENCES

Alagona, G., Ghio, C. & Monti, S. 1998. The effect of small substituents on the properties of indole. An ab initio 6-31g* study. Journal of Molecular Structure: THEOCHEM 433(1-3): 203-216.

Ashley, E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J.M., Mao, S., Sam, B., Sopha, C., Chuor, C.M., Nguon, C., Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K., Chutasmit, K., Suchatsoonthorn, C., Runcharoen, R., Hien, T.T., Thuy-Nhien, N.T., Thanh, N.V., Phu, N.H., Htut, Y., Han, K.T., Aye, K.H., Mokuolu, O.A., Olaosebikan, R.R., Folaranmi, O.O., Mayxay, M., Khanthavong, M., Hongvanthong, B., Newton, P.N., Onyamboko, M.A., Fanello, C.I., Tshefu, A.K., Mishra, N., Valecha, N., Phyo, A.P., Nosten, F., Yi, P., Tripura, R., Borrmann, S., Bashraheil, M., Peshu, J., Faiz, M.A., Ghose, A., Hossain, M.A., Samad, R., Rahman, M.R., Hasan, M.M., Islam, A., Miotto, O., Amato, R., MacInnis, B., Stalker, J., Kwiatkowski, D.P., Bozdech, Z., Jeeyapant, A., Cheah, P.Y., Sakulthaew, T., Chalk, J., Intharabut, B., Silamut, K., Lee, S.J., Vihokhern, B., Kunasol, C., Imwong, M., Tarning, J., Taylor, W.J., Yeung, S., Woodrow, C.J., Flegg, J.A., Das, D., Smith, J., Venkatesan, M., Plowe, C.V., Stepniewska, K., Guerin, P.J., Dondorp, A.M., Day, N.P., White, N.J. & Tracking Resistance to Artemisinin Collaboration (TRAC). 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine 371(5): 411-423.

Bailly, C. 2021. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers 112(4): e23398.

Brunet, C., Antoine, R., Lemoine, J.R.M. & Dugourd, P. 2012. Soret band of the gas-phase ferri-cytochrome C. The Journal of Physical Chemistry Letters 3(6): 698-702.

Buller, R., Peterson, M.L., Almarsson, O. & Leiserowitz, L. 2002. Quinoline binding site on malaria pigment crystal: A rational pathway for antimalaria drug design. Crystal Growth & Design 2(6): 553-562.

Congdon, M., Fritzemeier, R.G., Kharel, Y., Brown, A.M., Serbulea, V., Bevan, D.R., Lynch, K.R. & Santos, W.L. 2021. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. European Journal of Medicinal Chemistry 212: 113121.

Coronado, L.M., Nadovich, C.T. & Spadafora, C. 2014. Malarial hemozoin: From target to tool. Biochimica et Biophysica Acta (BBA)-General Subjects 1840(6): 2032-2041.

De Villiers, K.A. & Egan, T.J. 2021. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Accounts of Chemical Research 54(11): 2649-2659.

Egan, T.J., Mavuso, W.W., Ross, D.C. & Marques, H.M. 1997. Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin Ix. Journal of Inorganic Biochemistry 68(2): 137-145.

Fong, K.Y. & Wright, D.W. 2013. Hemozoin and antimalarial drug discovery. Future Medicinal Chemistry 5(12): 1437-1450.

Furrer, J. 2021. Old and new experiments for obtaining quaternary-carbon-only NMR spectra. Applied Spectroscopy Reviews 56(2): 128-142.

Gil, S., Hošek, T., Solyom, Z., Kümmerle, R., Brutscher, B., Pierattelli, R. & Felli, I.C. 2013. NMR spectroscopic studies of intrinsically disordered proteins at near‐physiological conditions. Angewandte Chemie 125(45): 12024-12028.

Ishmail, F.Z., Melis, D.R., Mbaba, M. & Smith, G.S. 2021. Diversification of quinoline-triazole scaffolds with corms: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. Journal of Inorganic Biochemistry 215: 111328.

Kapishnikov, S., Hempelmann, E., Elbaum, M., Als‐Nielsen, J. & Leiserowitz, L. 2021. Malaria pigment crystals: The achilles′ heel of the malaria parasite. ChemMedChem 16(10): 1515-1532.

Kaushik, N.K., Kaushik, N., Attri, P., Kumar, N., Kim, C.H., Verma, A.K. & Choi, E.H. 2013. Biomedical importance of indoles. Molecules 18(6): 6620-6662.

Kollipara, M.R., Sarkhel, P., Chakraborty, S. & Lalrempuia, R. 2003. Synthesis, characterization and molecular structure of a new (?6-P-Cymene) Ruthenium (II) amidine complex, [(?6-P-Cymene)Ru{NH=C(Me)3,5-Dmpz}(3,5-Hdmpz)](BF4)2· H2O. Journal of Coordination Chemistry 56(12): 1085-1091.

Kumar, N., Singh, R. & Rawat, D.S. 2012. Tetraoxanes: Synthetic and medicinal chemistry perspective. Medicinal Research Reviews 32(3): 581-610.

L'abbate, F.P., Müller, R., Openshaw, R., Combrinck, J.M., De Villiers, K.A., Hunter, R. & Egan, T.J. 2018. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. European Journal of Medicinal Chemistry 159: 243-254.

Melo, M.N., Pereira, F.M., Rocha, M.A., Ribeiro, J.G., Junges, A., Monteiro, W.F., Diz, F.M., Ligabue, R.A., Morrone, F.B. & Severino, P. 2021. Chitosan and chitosan/peg nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. Materials Science and Engineering: C 124: 112089.

Momma, K. & Izumi, F. 2008. Vesta: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography 41(3): 653-658.

Newman, D.J. & Cragg, G.M. 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70(3): 461-477.

Olafson, K.N., Nguyen, T.Q., Rimer, J.D. & Vekilov, P.G. 2017. Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proceedings of the National Academy of Sciences 114(29): 7531-7536.

Omar, F., Tareq, A.M., Alqahtani, A.M., Dhama, K., Sayeed, M.A., Emran, T.B. & Simal-Gandara, J. 2021. Plant-Based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 26(8): 2297.

Openshaw, R., Maepa, K., Benjamin, S.J., Wainwright, L., Combrinck, J.M., Hunter, R. & Egan, T.J. 2021. A diverse range of hemozoin inhibiting scaffolds act on Plasmodium falciparum as heme complexes. ACS Infectious Diseases 7(2): 362-376.

Paloque, L., Ramadani, A.P., Mercereau-Puijalon, O., Augereau, J.M. & Benoit-Vical, F. 2016. Plasmodium falciparum: Multifaceted resistance to artemisinins. Malaria Journal 15(1): 1-12.

Pindur, U. & Lemster, T. 2001. Advances in marine natural products of the indole and annelated indole series: Chemical and biological aspects. Current Medicinal Chemistry 8(13): 1681-1698.

Radzuan, N.H.M., Norazmi, N.A.Z., Ali, A.H., Abu Bakar, M., Agustar, H.K., Abd Razak, M.R.M. & Hassan, N.I. 2021. Synthesis, in vitro antiplasmodial activity and cytotoxicity of metalloporphyrins against Plasmodium falciparum K1 strain. Sains Malaysiana 50(10): 2945-2956.

Roman, G., Rahman, M.N., Vukomanovic, D., Jia, Z., Nakatsu, K. & Szarek, W.A. 2010. Heme oxygenase inhibition by 2‐Oxy‐substituted 1‐azolyl‐4‐phenylbutanes: Effect of variation of the azole moiety. x‐ray crystal structure of human heme oxygenase‐1 in complex with 4‐phenyl‐1‐(1h‐1, 2, 4‐triazol‐1‐yl)‐2‐butanone. Chemical Biology & Drug Design 75(1): 68-90.

Sahyoun, T., Arrault, A. & Schneider, R. 2019. Amidoximes and oximes: Synthesis, structure, and their key role as no donors. Molecules 24(13): 2470.

Sam, J., Shamsusah, N.A., Ali, A.H., Hod, R., Hassan, M.R. & Agustar, H.K. 2022. Prevalence of simian malaria among macaques in Malaysia (2000-2021): A systematic review. PLOS Neglected Tropical Diseases 16(7): e0010527.

Srivastava, R.M., Pereira, M.C., Faustino, W.W., Coutinho, K., Dos Anjos, J.V. & De Melo, S.J. 2009. Synthesis, mechanism of formation, and molecular orbital calculations of arylamidoximes. Monatshefte für Chemie-Chemical Monthly 140(11): 1319-1324.

Stephenson, L., Warburton, W. & Wilson, M. 1969. Reaction of some aromatic nitriles with hydroxylamine to give amides, and an alternative preparation of amidoximes. Journal of the Chemical Society C: Organic 6: 861-864.

Taher, M., Razali, N.F.M., Susanti, D., Rahman, M.A. & Ade, M. 2022. Phytochemical constituents and pharmacological activities of Picrasma javanica: Quassinoids interest. Sains Malaysiana 51(3): 757-774.

Takahashi, O., Masuda, Y., Muroya, A. & Furuya, T. 2010. Theory of docking scores and its application to a customizable scoring function. SAR and QSAR in Environmental Research 21(5-6): 547-558.

Turner, H. 2016. Spiroindolone NITD609 is a novel antimalarial drug that targets the P-type ATPase PfATP4. Future Medicinal Chemistry 8(2): 227-238.

Veale, C.G., Jayram, J., Naidoo, S., Laming, D., Swart, T., Olivier, T., Akerman, M.P., De Villiers, K.A., Hoppe, H.C. & Jeena, V. 2020. Insights into structural and physicochemical properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Medicinal Chemistry 11(1): 85-91.

Villarreal, W., Castro, W., González, S., Madamet, M., Amalvict, R., Pradines, B. & Navarro, M. 2022. Copper (I)-Chloroquine complexes: Interactions with DNA and ferriprotoporphyrin, inhibition of β-hematin formation and relation to antimalarial activity. Pharmaceuticals 15(8): 921.

Vörös, A., Mucsi, Z., Baán, Z., Timári, G., Hermecz, I., Mizsey, P. & Finta, Z. 2014. An experimental and theoretical study of reaction mechanisms between nitriles and hydroxylamine. Organic & Biomolecular Chemistry 12(40): 8036-8047.

 

*Corresponding author; email: aishah80@ukm.edu.my

 

 

 

 

 

previous