Sains Malaysiana 52(4)(2023):
1231-1242
http://doi.org/10.17576/jsm-2023-5204-15
Synthesis, Characterisation and Binding
Evaluation of New 6-Amidinoindole Compound as the Potential Heme Binder
(Sintesis, Pencirian dan Penilaian Pengikatan Sebatian
6-Amidinoindol Baharu sebagai Pengikat Heme Berpotensi)
NORAISYAH ABDUL KADIR JILANI1,
NATSUHISA OKA2,3, KAORI ANDO2 & SITI AISHAH HASBULLAH1,*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu
University, Gifu 501-1193, Japan
3Institute
for Glyco-core Research (iGCORE),
Gifu University, Gifu 501-1193, Japan
Received: 11
March 2022/Accepted: 6 March 2023
Abstract
In
this study, the new compound 6-amidinoindole 3 were synthesized by
hydrogenating the amidoxime unit in a high yield. The
compound was characterized by FTIR, 1H NMR, 13C NMR and
ESI-MS. The binding of the compound towards heme was
evaluated using absorption spectroscopy. The studies found that the association
constant (log K) is 3.90. The binding strength indicated the ligand's
possibility to interact significantly with heme and
acted as a binder to the malaria parasite. In silico hemozoin docking was performed to gain insight into
the mode of action. The docked score is -8.3 kcal/mol,
indicated the possible inhibition of hemozoin. This
study could serve as the basis for the future development of malaria sensors
and antiplasmodial activity.
Keywords: Amidino; heme binding; indole; malarial molecular target; synthesis
Abstrak
Dalam kajian ini, sebatian 6-amidinoindol 3 baharu telah disintesis melalui penghidrogenan unit amidoksim dan hasil yang
tinggi telah diperoleh. Sebatian ini telah dicirikan oleh FTIR, 1H
NMR, 13C NMR dan ESI-MS. Pengikatan sebatian terhadap heme telah
dinilai menggunakan spektroskopi serapan. Kajian mendapati bahawa pemalar
pengikatan (log K) ialah 3.90. Kekuatan pengikatan menunjukkan kebolehan ligan
berinteraksi dengan heme secara signifikan dan juga bertindak sebagai pengikat
kepada parasit malaria. Mengedok hemozoin secara in silico dilakukan
untuk mendapatkan gambaran lebih dalam tentang cara kerja. Dok skor ialah -8.3
kcal/mol yang menunjukkan kemungkinan berlakunya perencatan hemozoin. Kajian
ini boleh menjadi asas untuk pembangunan sensor malaria dan aktiviti
antiplasmodial pada masa hadapan.
Kata kunci: Amidino; indol; pengikatan heme; sasaran molekul malaria; sintesis
REFERENCES
Alagona, G., Ghio, C. & Monti, S. 1998. The effect of small
substituents on the properties of indole. An ab initio 6-31g* study. Journal
of Molecular Structure: THEOCHEM 433(1-3): 203-216.
Ashley, E.A.,
Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., Sreng, S.,
Anderson, J.M., Mao, S., Sam, B., Sopha, C., Chuor, C.M., Nguon, C.,
Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K.,
Chutasmit, K., Suchatsoonthorn, C., Runcharoen, R., Hien, T.T., Thuy-Nhien,
N.T., Thanh, N.V., Phu, N.H., Htut, Y., Han, K.T., Aye, K.H., Mokuolu, O.A.,
Olaosebikan, R.R., Folaranmi, O.O., Mayxay, M., Khanthavong, M., Hongvanthong,
B., Newton, P.N., Onyamboko, M.A., Fanello, C.I., Tshefu, A.K., Mishra, N.,
Valecha, N., Phyo, A.P., Nosten, F., Yi, P., Tripura, R., Borrmann, S.,
Bashraheil, M., Peshu, J., Faiz, M.A., Ghose, A., Hossain, M.A., Samad, R.,
Rahman, M.R., Hasan, M.M., Islam, A., Miotto, O., Amato, R., MacInnis, B.,
Stalker, J., Kwiatkowski, D.P., Bozdech, Z., Jeeyapant, A., Cheah, P.Y., Sakulthaew,
T., Chalk, J., Intharabut, B., Silamut, K., Lee, S.J., Vihokhern, B., Kunasol,
C., Imwong, M., Tarning, J., Taylor, W.J., Yeung, S., Woodrow, C.J., Flegg,
J.A., Das, D., Smith, J., Venkatesan, M., Plowe, C.V., Stepniewska, K., Guerin,
P.J., Dondorp, A.M., Day, N.P., White, N.J. & Tracking Resistance to
Artemisinin Collaboration (TRAC). 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine 371(5):
411-423.
Bailly, C. 2021. Pyronaridine: An update of
its pharmacological activities and mechanisms of action. Biopolymers 112(4): e23398.
Brunet, C., Antoine, R., Lemoine, J.R.M.
& Dugourd, P. 2012. Soret band of the gas-phase ferri-cytochrome C. The Journal of Physical Chemistry Letters 3(6): 698-702.
Buller, R., Peterson, M.L., Almarsson, O.
& Leiserowitz, L. 2002. Quinoline binding site on malaria pigment crystal:
A rational pathway for antimalaria drug design. Crystal Growth & Design 2(6): 553-562.
Congdon, M., Fritzemeier, R.G., Kharel, Y.,
Brown, A.M., Serbulea, V., Bevan, D.R., Lynch, K.R. & Santos, W.L. 2021.
Probing the substitution pattern of indole-based scaffold reveals potent and
selective sphingosine kinase 2 inhibitors. European
Journal of Medicinal Chemistry 212: 113121.
Coronado, L.M., Nadovich, C.T. &
Spadafora, C. 2014. Malarial hemozoin: From target to tool. Biochimica et Biophysica Acta (BBA)-General
Subjects 1840(6): 2032-2041.
De Villiers, K.A. & Egan, T.J. 2021.
Heme detoxification in the malaria parasite: A target for antimalarial drug
development. Accounts of Chemical
Research 54(11): 2649-2659.
Egan, T.J., Mavuso, W.W., Ross, D.C. &
Marques, H.M. 1997. Thermodynamic factors controlling the interaction of
quinoline antimalarial drugs with ferriprotoporphyrin Ix. Journal of Inorganic Biochemistry 68(2): 137-145.
Fong, K.Y. & Wright, D.W. 2013.
Hemozoin and antimalarial drug discovery. Future
Medicinal Chemistry 5(12): 1437-1450.
Furrer, J. 2021. Old and new experiments
for obtaining quaternary-carbon-only NMR spectra. Applied Spectroscopy Reviews 56(2): 128-142.
Gil, S., Hošek, T., Solyom, Z., Kümmerle,
R., Brutscher, B., Pierattelli, R. & Felli, I.C. 2013. NMR spectroscopic
studies of intrinsically disordered proteins at near‐physiological
conditions. Angewandte Chemie 125(45): 12024-12028.
Ishmail, F.Z., Melis, D.R., Mbaba, M. &
Smith, G.S. 2021. Diversification of quinoline-triazole scaffolds with corms:
Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. Journal of Inorganic
Biochemistry 215: 111328.
Kapishnikov, S., Hempelmann, E., Elbaum,
M., Als‐Nielsen, J. & Leiserowitz, L. 2021. Malaria pigment crystals:
The achilles′ heel of the malaria parasite. ChemMedChem 16(10): 1515-1532.
Kaushik, N.K., Kaushik, N., Attri, P.,
Kumar, N., Kim, C.H., Verma, A.K. & Choi, E.H. 2013. Biomedical importance
of indoles. Molecules 18(6):
6620-6662.
Kollipara, M.R., Sarkhel, P., Chakraborty,
S. & Lalrempuia, R. 2003. Synthesis, characterization and molecular
structure of a new (?6-P-Cymene) Ruthenium (II) amidine complex, [(?6-P-Cymene)Ru{NH=C(Me)3,5-Dmpz}(3,5-Hdmpz)](BF4)2·
H2O. Journal of Coordination
Chemistry 56(12): 1085-1091.
Kumar, N., Singh, R. & Rawat, D.S.
2012. Tetraoxanes: Synthetic and medicinal chemistry perspective. Medicinal Research Reviews 32(3):
581-610.
L'abbate, F.P., Müller, R., Openshaw, R.,
Combrinck, J.M., De Villiers, K.A., Hunter, R. & Egan, T.J. 2018. Hemozoin
inhibiting 2-phenylbenzimidazoles active against malaria parasites. European Journal of Medicinal Chemistry 159: 243-254.
Melo, M.N., Pereira, F.M., Rocha, M.A.,
Ribeiro, J.G., Junges, A., Monteiro, W.F., Diz, F.M., Ligabue, R.A., Morrone,
F.B. & Severino, P. 2021. Chitosan and chitosan/peg nanoparticles loaded
with indole-3-carbinol: Characterization, computational study and potential
effect on human bladder cancer cells. Materials
Science and Engineering: C 124: 112089.
Momma, K. & Izumi, F. 2008. Vesta: A
three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography 41(3): 653-658.
Newman, D.J. & Cragg, G.M. 2007.
Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70(3):
461-477.
Olafson, K.N., Nguyen, T.Q., Rimer, J.D.
& Vekilov, P.G. 2017. Antimalarials inhibit hematin crystallization by
unique drug-surface site interactions. Proceedings
of the National Academy of Sciences 114(29): 7531-7536.
Omar, F., Tareq, A.M., Alqahtani, A.M., Dhama,
K., Sayeed, M.A., Emran, T.B. & Simal-Gandara, J. 2021. Plant-Based indole
alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 26(8): 2297.
Openshaw, R., Maepa, K., Benjamin, S.J.,
Wainwright, L., Combrinck, J.M., Hunter, R. & Egan, T.J. 2021. A diverse
range of hemozoin inhibiting scaffolds act on Plasmodium falciparum as heme complexes. ACS Infectious Diseases 7(2): 362-376.
Paloque, L., Ramadani, A.P.,
Mercereau-Puijalon, O., Augereau, J.M. & Benoit-Vical, F. 2016. Plasmodium falciparum: Multifaceted
resistance to artemisinins. Malaria
Journal 15(1): 1-12.
Pindur, U. & Lemster, T. 2001. Advances
in marine natural products of the indole and annelated indole series: Chemical
and biological aspects. Current Medicinal
Chemistry 8(13): 1681-1698.
Radzuan, N.H.M., Norazmi, N.A.Z., Ali,
A.H., Abu Bakar, M., Agustar, H.K., Abd Razak, M.R.M. & Hassan, N.I. 2021.
Synthesis, in vitro antiplasmodial
activity and cytotoxicity of metalloporphyrins against Plasmodium falciparum K1 strain. Sains Malaysiana 50(10): 2945-2956.
Roman, G., Rahman, M.N., Vukomanovic, D.,
Jia, Z., Nakatsu, K. & Szarek, W.A. 2010. Heme oxygenase inhibition by
2‐Oxy‐substituted 1‐azolyl‐4‐phenylbutanes:
Effect of variation of the azole moiety. x‐ray crystal structure of human
heme oxygenase‐1 in complex with
4‐phenyl‐1‐(1h‐1, 2,
4‐triazol‐1‐yl)‐2‐butanone. Chemical Biology & Drug Design 75(1): 68-90.
Sahyoun, T., Arrault, A. & Schneider,
R. 2019. Amidoximes and oximes: Synthesis, structure, and their key role as no
donors. Molecules 24(13): 2470.
Sam, J., Shamsusah, N.A., Ali, A.H., Hod,
R., Hassan, M.R. & Agustar, H.K. 2022. Prevalence of simian malaria among
macaques in Malaysia (2000-2021): A systematic review. PLOS Neglected Tropical Diseases 16(7): e0010527.
Srivastava, R.M., Pereira, M.C., Faustino,
W.W., Coutinho, K., Dos Anjos, J.V. & De Melo, S.J. 2009. Synthesis,
mechanism of formation, and molecular orbital calculations of arylamidoximes. Monatshefte für Chemie-Chemical Monthly 140(11): 1319-1324.
Stephenson, L., Warburton, W. & Wilson,
M. 1969. Reaction of some aromatic nitriles with hydroxylamine to give amides,
and an alternative preparation of amidoximes. Journal of the Chemical Society C: Organic 6: 861-864.
Taher, M., Razali, N.F.M., Susanti, D.,
Rahman, M.A. & Ade, M. 2022. Phytochemical constituents and pharmacological
activities of Picrasma javanica:
Quassinoids interest. Sains Malaysiana 51(3): 757-774.
Takahashi, O., Masuda, Y., Muroya, A. &
Furuya, T. 2010. Theory of docking scores and its application to a customizable
scoring function. SAR and QSAR in
Environmental Research 21(5-6): 547-558.
Turner, H. 2016. Spiroindolone NITD609 is a
novel antimalarial drug that targets the P-type ATPase PfATP4. Future Medicinal Chemistry 8(2): 227-238.
Veale, C.G., Jayram, J., Naidoo, S.,
Laming, D., Swart, T., Olivier, T., Akerman, M.P., De Villiers, K.A., Hoppe,
H.C. & Jeena, V. 2020. Insights into structural and physicochemical
properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Medicinal Chemistry 11(1): 85-91.
Villarreal, W., Castro, W., González, S.,
Madamet, M., Amalvict, R., Pradines, B. & Navarro, M. 2022. Copper
(I)-Chloroquine complexes: Interactions with DNA and ferriprotoporphyrin,
inhibition of β-hematin formation and relation to antimalarial activity. Pharmaceuticals 15(8): 921.
Vörös, A., Mucsi, Z., Baán, Z., Timári, G.,
Hermecz, I., Mizsey, P. & Finta, Z. 2014. An experimental and theoretical
study of reaction mechanisms between nitriles and hydroxylamine. Organic & Biomolecular Chemistry 12(40): 8036-8047.
*Corresponding author; email: aishah80@ukm.edu.my
|