Sains Malaysiana 52(5)(2023): 1359-1370

http://doi.org/10.17576/jsm-2023-5205-03

 

Rekod Jangka Panjang Kepekatan Metana di Malaysia

(Long Term Record of Methane in Malaysia)

 

MOHD RASHDAN TOPA1,2, MOHD TALIB LATIF1,*, MURNIRA OTHMAN3, MAGGIE OOI CHEL GEE4, NORFAZRIN MOHD HANIF1, MOHD SHAHRUL MOHD NADZIR1, HARIS HAFIZAL ABD HAMID1, ANIS ASMA AHMAD MOHTAR1,5 & LIEW JUNENG1

 

1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Jabatan Alam Sekitar Malaysia, Kementerian Alam Sekitar dan Air, 62574 Putrajaya, Wilayah Persekutuan, Malaysia

3Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

4Pusat Sistem Perubahan Iklim Tropika (IKLIM), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

5Jabatan Meteorologi Malaysia, Kementerian Sumber Asli, Alam Sekitar dan Perubahan Iklim, Jalan Sultan, 46667 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 

Received: 17 December 2022/Accepted: 17 April 2023

 

Abstrak

Gas metana (CH4) adalah gas rumah hijau yang menyebabkan perubahan iklim dan pemanasan dunia. Kajian CH4 dijalankan untuk melihat tren pelepasan CH4 di Malaysia dalam satu jangka masa yang panjang (10 tahun) dari tahun 2000 hingga 2009 dan menilai hubungan CH4 dengan ozon permukaan (O3). Data CH4 daripada 19 stesen pemantauan kualiti udara automatik berterusan Jabatan Alam Sekitar (JAS) di Malaysia telah dianalisis menggunakan analisis statistik dan korelasi Pearson. Hasil kajian mendapati nilai bacaan kepekatan purata bulanan CH4 tertinggi dicatatkan di stesen Larkin, Johor Bahru iaitu 2.61±0.54 ppm. Nilai purata kepekatan CH4 berdasarkan data yang direkodkan di semua stesen di Malaysia adalah 2.00 ppm. Taburan kepekatan CH4 yang lebih tinggi didapati tertumpu di kawasan bandar dan kawasan perindustrian di Selangor, Melaka dan Johor. Analisis korelasi bagi menentukan hubungan CH4 dengan bahan pencemar O3 mendapati 15 stesen menunjukkan korelasi positif yang sangat kecil dan lemah (r < 0.20 dan 0.20 < r < 0.40) manakala empat stesen lagi menunjukkan korelasi negatif. Hubungan antara CH4 dengan bahan pencemar O3 bagi kesemua stesen adalah tidak signifikan (r < 0.5, p > 0.05). Stesen Shah Alam didapati menunjukkan korelasi CH4 paling tinggi dengan O3 berbanding stesen lain. Pengetahuan asas berkenaan CH4 dalam udara ambien Malaysia yang ditunjukkan dalam kajian ini boleh digunakan untuk menilai potensi impak CH4 terhadap alam sekitar, perubahan iklim dan kesihatan manusia.

 

Kata kunci: Gas rumah hijau; iklim tropika; metana; ozon permukaan

 

Abstract

Methane (CH4) is a greenhouse gas (GHG) that causes climate change and global warming. This study was conducted to look at the tren of CH4 emission in Malaysia over a long period of time (10 years) from 2000 to 2009 and evaluate the relationship of CH4 with surface ozone (O3). CH4 data from 19 continuous automatic air quality monitoring stations from the Department of Environment (DOE) in Malaysia were analyzed using statistical analysis and Pearson correlation. The results of the study found that the highest average monthly CH4 concentration reading was recorded at Larkin station, Johor Bahru which is 2.61 ± 0.54 ppm. The average concentration of CH4 based on the data recorded at all stations in Malaysia is 2.00 ppm. The distribution of CH4 concentrations was found to be concentrated in urban and industrial areas in Selangor, Melaka and Johor. Correlation analysis to determine the relationship of CH4 with O3 pollutants found that 15 stations showed very small and weak positive correlations (r < 0.20 and 0.20 < r < 0.40) while another four stations showed negative correlations. The relationship between CH4 and O3 pollutants for all stations was not significant (r < 0.5, p > 0.05). Shah Alam station was found to show the highest correlation of CH4 with O3 compared to other stations. The fundamental knowledge of CH4 in Malaysian ambient air provided by this study can be utilised to assess its possible effects on the environment, climate change and human health. 

 

Keywords: Greenhouse gases; methane; surface ozone; tropical climate

 

REFERENCES

Adetona, A.B. & Layzell, D.B. 2023. Diverting residual biomass to energy use: Quantifying the global warming potential of biogenic CO2 (GWPbCO2). GCB Bioenergy 15(5): 697-709. https://doi.org/10.1111/gcbb.13048

Amin, M.A., Shukor, H., Yin, L.S., Kasim, F.H., Shoparwe, N.F., Makhtar, M.M.Z. & Yaser, A.Z. 2022. Methane biogas production in Malaysia: Challenge and future plan. International Journal of Chemical Engineering 2022: Article ID. 2278211.

Banan, N., Latif, M.T., Juneng, L. & Ahamad, F. 2013. Characteristics of surface ozone concentrations at stations with different backgrounds in the Malaysian Peninsula. Aerosol and Air Quality Research 13(3): 1090-1106.

Boakye‐Agyei, K. 2011. Approaching climate adjusted environmental due diligence for multilateral financial institutions. International Journal of Climate Change Strategies and Management 3(3): 264-274.

Busman, N.A., Melling, L., Goh, K.J., Imran, Y., Sangok, F.E. & Watanabe, A. 2023. Soil Co2 and Ch4 fluxes from different forest types in tropical peat swamp forest. Science of The Total Environment 858: 159973.

Chaddy, A., Melling, L., Ishikura, K., Goh, K.J., Toma, Y. & Hatano, R. 2021. Effects of long-term nitrogen fertilization and ground water level changes on soil CO2 fluxes from oil palm plantation on tropical peatland. Atmosphere 12(10): 1340.

Cheng, C.H. & Redfern, S.A.T. 2022. Impact of interannual and multidecadal trens on methane-climate feedbacks and sensitivity. Nature Communications 13(1): 3592.

Chin, M.J., Poh, P.E., Tey, B.T., Chan, E.S. & Chin, K.L. 2013. Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective. Renewable and Sustainable Energy Reviews 26: 717-726.

Dlugokencky, E.J., Nisbet, E.G., Fisher, R. & Lowry, D.J. 2011. Global atmospheric methane: Budget, changes and dangers. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 369(1943): 2058-2072.

Halady, I.R. & Rao, P.H. 2010. Does awareness to climate change lead to behavioral change? International Journal of Climate Change Strategies and Management 2(1): 6-22.

Hopkins, F.M., Ehleringer, J.R., Bush, S.E., Duren, R.M., Miller, C.E., Lai, C.T., Hsu, Y.K., Carranza, V. & Randerson, J.T. 2016. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies. Earth's Future 4(9): 408-425.

KASA 2020. Malaysia Third Biennial Update Report to the UNFCCC. Putrajaya: Ministry of Environment and Water Malaysia.

Lam, M.K. & Lee, K.T. 2011. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win-win strategies toward better environmental protection. Biotechnology Advances 29(1): 124-141.

Lan, X., Thoning, K.W. & Dlugokencky, E.J. 2022. Trens in Globally-Averaged CH4, N2O, and SF6 Determined from NOAA Global Monitoring Laboratory Measurements. Version 2022-12. https://doi.org/10.15138/P8XG-AA10

Latif, M.T., Dominick, D., Ahamad, F., Khan, M.F., Juneng, L., Hamzah, F.M. & Nadzir, M.S.M. 2014. Long term assessment of air quality from a background station on the Malaysian Peninsula. Science of The Total Environment 482-483(1): 336-348.

Lelieveld, J., Crutzen, P.J. & Brühl, C. 1993. Climate effects of atmospheric methane. Chemosphere 26(1-4): 739-768.

Li, L., Lei, L., Song, H., Zeng, Z. & He, Z. 2022. Spatiotemporal geostatistical analysis and global mapping of CH4 columns from GOSAT observations. Remote Sensing 14(3): 654.

Masarie, K.A. & Tans, P.P. 1995. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. Journal of Geophysical Research: Atmostphere 100(D6): 11593-11610.

Myhre, G., Shindell, D., Bréon, F-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemuara, T. & Zhang, H. 2013. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. Cambridge University Press. pp. 659-740. doi: 10.1017/CBO9781107415324.018

Olivier, J., Schure, K. & Peters, J.J. 2017. Trens in Global CO2 and Total Greenhouse Gas Emissions: Summary of the 2017 Report. The Hague: PBL Netherlands Environmental Assessment Agency

Rangga, J.U., Ismail, S.N.S., Rasdi, I. & Karuppiah, K. 2023. Contribution of waste segregation to ghg emissions, land usage, and health risk of NMVOC exposure: A study in Malaysia. Journal of Material Cycles and Waste Management 25: 181-197.

Razali, A.M. & Yeow, P.M. 2014. Pemetaan kepekatan metana di Semenanjung Malaysia. Journal of Quality Measurement and Analysis 10(2): 99-110.

Rendana, M., Idris, W.M.R. & Rahim, S.A. 2021. Atmospheric Methane condition over the south Sumatera peatland during the COVID-19 pandemic. Aerosol and Air Quality Research 21: 210072.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.S., Kleinen, T., Krummel, P., Lamarque, J.F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Mcdonald, K.C., Marshall, J., Melton, J.R., Morino, I., Naik, V., O'doherty, S., Parmentier, F.J.W., Patra, P.K., Peng, C., Peng, S., Peters, G.P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.J., Saito, M., Santini, M., Schroeder, R., Simpson, I.J., Spahni, R., Steele, P., Takizawa, A., Thornton, B.F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Van Weele, M., Van Der Werf, G.R., Weiss, R., Wiedinmyer, C., Wilton, D.J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z. & Zhu, Q. 2016. The global methane budget 2000-2012. Earth Syst. Sci. Data 8(2): 697-751.

Shivanna, K.R. 2022. Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy 88(2): 160-171.

Sumathi, S., Chai, S.P. & Mohamed, A.R. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews 12(9): 2404-2421.

Tang, W., Xu, Y.J., Ma, Y., Maher, D.T. & Li, S. 2021. Hot spot of CH4 production and diffusive flux in rivers with high urbanization. Water Research 204(1): 117624.

Wu, T.Y., Mohammad, A.W., Jahim, J.M. & Anuar, N. 2010. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 91(7): 1467-1490.

 

*Corresponding author; email: talib@ukm.edu.my

 

 

 

 

previous