Sains Malaysiana 52(5)(2023):
1397-1405
http://doi.org/10.17576/jsm-2023-5205-06
Toxicity
of Clove Oil Nanoparticles against Diamondback Moth Plutella xylostella (L.)
(Ketoksikan Nanozarah Minyak Cengkih terhadap
Rama-rama Berlian Plutella xylostella (L.))
SILVI IKAWATI* & FERY ABDUL CHOLIQ
Department of
Plant Pest and Disease, Faculty of Agriculture, University of Brawijaya, Jl.
Veteran, Malang 65145, East Java, Indonesia
Received:
11 April 2022/Accepted: 19 April 2023
Abstract
Plutella
xylostella, diamondback moth (DBM), has been one of the most
challenging insects to control in the world to date. Environmentally
friendly methods of control, such as the use of botanical insecticides, are
available. A formulation that can sustain the main
compound's level is required, which can be accomplished through soluble powder nanoformulation. The
goal of this research was to test and evaluate the ability of clove oil
nanoparticles produced from polyethylene glycol 6000 (PEG 6000) to control DBM
utilizing a solid dispersion technique. Bioassay by leaf dip method in laboratory was used to
test the lethal effect of clove oil nanoparticles (CO-NPs) on DBM. Clove
oil nanoformulation was successful because it produced nanoparticles (179.98 nm in diameter) while maintaining high levels of the active component
eugenol. Clove oil nanoparticles may increase
clove oil's toxicity to DBM, seen from the LC50 value after 24 h of
treatment. The LC50 values for clove oil nanoparticles
after 24 and 48 h of treatment were 10.308 and 9.451%, respectively.
Keywords: Botanical
pesticides; clove oil; nanoformulation; Plutella
xylostella; solid dispersion
Abstrak
Plutella
xylostella, rama-rama
berlian (DBM), telah menjadi salah satu serangga yang paling mencabar untuk
dikawal di dunia setakat ini. Kaedah kawalan mesra alam, seperti penggunaan
racun serangga botani, tersedia. Formulasi yang boleh mengekalkan tahap
sebatian utama diperlukan, yang boleh dicapai melalui nanoformulasi pepejal.
Matlamat penyelidikan ini adalah untuk menguji dan menilai keupayaan nanozarah
minyak cengkih yang dihasilkan daripada polietilena glikol 6000 (PEG 6000)
mengawal DBM menggunakan teknik penyebaran pepejal. Bioassay melalui kaedah
celup daun di makmal digunakan untuk menguji kesan maut nanozarah minyak
cengkih (CO-NPs) pada DBM. Nanoformulasi minyak cengkih berjaya kerana ia
menghasilkan nanozarah (diameter 179.98 nm) sambil mengekalkan tahap tinggi
komponen aktif eugenol. Nanozarah minyak cengkih boleh meningkatkan ketoksikan
minyak cengkih kepada DBM, dilihat daripada nilai LC50 selepas 24
jam rawatan. Nilai LC50 untuk nanozarah minyak cengkih selepas 24
dan 48 jam rawatan masing-masing adalah 10.308 dan 9.451%.
Kata kunci: Formulasi nano; minyak cengkih; penyebaran pepejal; Plutella xylostella; racun serangga
botani
REFERENCES
Abbott, W.S. 1925. A method for computing the effectiveness
of an insecticide. J. Econ. Entomol. 18:
265-267.
Baghel, S., Cathcart, H. & O’Reilly, N.J.
2016. Polymeric amorphous solid dispersions: A review of amorphization, crystallization,
stabilization, solid-state characterization, and aqueous solubilization of
biopharmaceutical classification system class ii drugs. Journal of
Pharmaceutical Sciences 105(9): 2527-2544.
Balaji, A.P.B.,
Mishra, P., Suresh Kumar, R.S., Ashu, A., Margulis, K., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. 2015. The environmentally benign
form of pesticide in hydrodispersive nanometric form with improved efficacy
against adult mosquitoes at low exposure concentrations. Bulletin of
Environmental Contamination and
Toxicology 95(6): 734-739.
Balakrishnan,
V., Asifa, K.P. & Chitra, K. C. 2014. Genotoxic potential of nonylphenol in
freshwater fish, Oreochromis mossambicus. International Journal of Applied and Natural Sciences 3(2): 81-88.
Cui, B., Lv, Y., Gao, F., Wang, C., Zeng, Z.,
Wang, Y., Sun, C., Zhao, X., Shen, Y., Liu, G. & Cui, H. 2019. Improving
abamectin bioavailability via nanosuspension constructed by wet milling
technique. Pest Management Science 75(10): 2756-2764.
D’souza, A.A. & Shegokar, R. 2016.
Polyethylene glycol (PEG): A versatile polymer for
pharmaceutical applications. Expert Opinion on Drug Delivery 13(9): 1257-1275.
da Costa, J.T., Forim, M.R., Costa, E.S., De
Souza, J.R., Mondego, J.M. & Boiça Junior, A.L. 2014. Effects of different
formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on
beans. Journal of Stored Products Research 56: 49-53.
Dannenfelser, R.M., He, H., Joshi, Y.,
Bateman, S. & Serajuddin, A.T.M. 2004. Development of clinical dosage forms
for a poorly water soluble drug I: Application of polyethylene
glycol–polysorbate 80 solid dispersion carrier system. Journal of
Pharmaceutical Sciences 93(5): 1165-1175.
Das, S.K., Roy, S., Yuvaraja, K., Khanam, J.,
Kalimuthu, Y. & Nanda, A. 2012. Solid dispersions: An approach to enhance the bioavailability of poorly
water-soluble drugs. International Journal of Pharmacology and
Pharmaceutical Technology 1: 2277-3436.
Durán-Lara, E.F., Valderrama, A. &
Marican, A. 2020. Natural organic compounds for application in organic farming. Agriculture 10(2): 41.
González, J.O.W., Gutiérrez, M.M., Ferrero,
A.A. & Fernández Band, B. 2014. Essential oils nanoformulations for
stored-product pest control - Characterization and
biological properties. Chemosphere 100: 130-138.
Gross, A.D., Kimber, M.J., Day, T.A.,
Ribeiro, P. & Coats, J.R. 2014. Investigating the effect of plant essential
oils against the American cockroach octopamine receptor (Pa oa1) expressed in
yeast. ACS Symposium Series 1172: 113-130.
Halake, K., Birajdar, M., Kim, B.S., Bae, H.,
Lee, C.C., Kim, Y.J., Kim, S., Kim, H.J., Ahn, S., An, S.Y. & Lee, J. 2014.
Recent application developments of water-soluble synthetic polymers. Journal
of Industrial and Engineering Chemistry 20(6): 3913-3918.
Hossain, M.A., Al-Hashmi, R.A., Weli, A.M.,
Al-Riyami, Q. & Al-Sabahib, J.N. 2012. Constituents of the essential oil
from different brands of Syzigium
caryophyllatum L by gas chromatography–mass spectrometry. Asian Pacific
Journal of Tropical Biomedicine 2(3): S1446-S1449.
Ikawati, S., Himawan, T., Abadi, A.L. &
Tarno, H. 2020. Thermostability, photostability, and toxicity of clove oil
nanoparticles against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas21(10): 4764-4771.
Ikawati, S., Himawan, T., Abadi, A.L. &
Tarno, H. 2021a. Characterization of clove oil nanoparticles and their
insecticidal activity against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Agrivita 43(1): 43-55.
Ikawati, S., Himawan, T., Abadi, A.L. &
Tarno, H. 2021b. Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). Journal
of Pesticide Science 46(2): 222-228.
Isman, M.B. 2016. Pesticides based on plant
essential oils: Phytochemical and practical considerations. Medicinal
and Aromatic Crops: Production, Phytochemistry, and Utilization. American
Chemical Society 2: 13-26.
Kacar, G. 2018. Characterizing the structure
and properties of dry and wet polyethylene glycol using multi-scale simulations. Physical Chemistry Chemical Physics 20(17): 12303-12311.
Kafle, L. & Shih, C.J. 2013. Toxicity and
repellency of compounds from clove (Syzygium
aromaticum) to red imported fire ants Solenopsis
invicta (Hymenoptera: Formicidae). Journal of Economic Entomology 106(1): 131-135.
Kah, M., Kookana, R.S., Gogos, A. &
Bucheli, T.D. 2018. A critical evaluation of nanopesticides and nanofertilizers
against their conventional analogues. Nature Nanotechnology 13(8): 677-684.
Kanaujia, P., Poovizhi, P., Ng, W.K. &
Tan, R.B.H. 2015. Amorphous formulations for dissolution and bioavailability
enhancement of poorly soluble APIs. Powder Technology 285: 2-15.
Koh, P.T., Chuah, J.N., Talekar, M.,
Gorajana, A. & Garg, S. 2013. Formulation development and dissolution rate
enhancement of efavirenz by solid dispersion systems. Indian Journal of
Pharmaceutical Sciences 75(3): 291-301.
Labuschagne, P. 2018. Impact of wall material
physicochemical characteristics on the stability of encapsulated
phytochemicals: A review. Food Research International 107: 227-247.
Li, X., Li, R., Zhu, B., Gao, X. & Liang,
P. 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to
chlorantraniliprole resistance in Plutella
xylostella (L.). Pest Management Science 74(6): 1386-1393.
Nobbmann, U. 2014. Polydispersity – what does
it mean for DLS and chromatography? Malvern Instruments.
Nuruzzaman, M., Rahman, M.M., Liu, Y. &
Naidu, R. 2016. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of
Agricultural and Food Chemistry 64(7): 1447-1483.
de
Oliveira, J.L., Campos, E.V.R., Germano-Costa, T., Lima, R., Vechia, J.F.D.,
Soares, S.T., de Andrade,
D.J., Gonçalves, K.C., do Nascimento, J.,
Polanczyk, R.A. & Fraceto, L.F. 2019. Association of zein nanoparticles
with botanical compounds for effective pest control systems. Pest Management
Science 75(7): 1855-1865.
Pinheiro, P.F., de Queiroz, V.T., Rondelli,
V.M., Costa, A.V., de Paula Marcelino, T. & Pratissoli, D. 2013.
Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus
persicae. Ciência e Agrotecnologia 37(2). https://doi.org/10.1590/S1413-70542013000200004
Saini, P.,
Gopal, M., Kumar, R. & Srivastava, C. 2014. Development of pyridalyl
nanocapsule suspension for efficient management of tomato fruit and shoot borer
(Helicoverpa armigera). Journal of
Environmental Science and Health, Part B 49(5): 344-351.
Singh, R. & Dutta, S. 2018. Synthesis and
characterization of solar photoactive TiO2 nanoparticles with
enhanced structural and optical properties. Advanced Powder Technology 29(2): 211-219.
Sinha, B., Müller, R.H. & Möschwitzer,
J.P. 2013. Bottom-up approaches for preparing drug nanocrystals: Formulations
and factors affecting particle size. International Journal of Pharmaceutics 453(1): 126-141.
Talekar, N.S.
& Shelton, A.M. 1993. Biology, ecology, and management of the diamondback
moth. Annual Review of Entomology 38(1): 275-301.
Widayat, Cahyono, B., Hadiyanto, &
Hadiyanto. 2014. Improvement of clove oil quality by using
adsorption-distillation process. Research Journal of Applied Sciences,
Engineering and Technology 7(18): 3867-3871.
Wünsch, A.,
Mulac, D. & Langer, K. 2021. Lecithin coating as universal stabilization
and functionalization strategy for nanosized drug carriers to overcome the
blood–brain barrier. International Journal of Pharmaceutics 593: 120146.
Xia, X., Sun, B., Gurr, G.M., Vasseur, L.,
Xue, M. & You, M. 2018. Gut microbiota mediate insecticide resistance in
the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology 9: 25.
Yang, F.L., Li, X.G., Zhu, F. & Lei, C.L.
2009. Structural characterization of nanoparticles loaded with garlic essential
oil and their insecticidal activity against Tribolium castaneum (Herbst)
(Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57(21): 10156-10162.
Zalucki, M.P., Shabbir, A., Silva, R.,
Adamson, D., Liu, S.S. & Furlong, M.J. 2012. Estimating the economic cost
of one of the world’s major insect pests, Plutella xylostella (lepidoptera: Plutellidae): Just how long is a piece of string? Journal
of Economic Entomology 105(4): 1115-1129.
*Corresponding author; email: silviikawati@ub.ac.id
|