Sains Malaysiana 52(5)(2023): 1397-1405

http://doi.org/10.17576/jsm-2023-5205-06

 

Toxicity of Clove Oil Nanoparticles against Diamondback Moth Plutella xylostella (L.)

(Ketoksikan Nanozarah Minyak Cengkih terhadap Rama-rama Berlian Plutella xylostella (L.))

 

SILVI IKAWATI* & FERY ABDUL CHOLIQ

 

Department of Plant Pest and Disease, Faculty of Agriculture, University of Brawijaya, Jl. Veteran, Malang 65145, East Java, Indonesia

 

Received: 11 April 2022/Accepted: 19 April 2023

 

Abstract

Plutella xylostella, diamondback moth (DBM), has been one of the most challenging insects to control in the world to date. Environmentally friendly methods of control, such as the use of botanical insecticides, are available. A formulation that can sustain the main compound's level is required, which can be accomplished through soluble powder nanoformulation. The goal of this research was to test and evaluate the ability of clove oil nanoparticles produced from polyethylene glycol 6000 (PEG 6000) to control DBM utilizing a solid dispersion technique. Bioassay by leaf dip method in laboratory was used to test the lethal effect of clove oil nanoparticles (CO-NPs) on DBM. Clove oil nanoformulation was successful because it produced nanoparticles (179.98 nm in diameter) while maintaining high levels of the active component eugenol. Clove oil nanoparticles may increase clove oil's toxicity to DBM, seen from the LC50 value after 24 h of treatment. The LC50 values for clove oil nanoparticles after 24 and 48 h of treatment were 10.308 and 9.451%, respectively.

 

Keywords: Botanical pesticides; clove oil; nanoformulation; Plutella xylostella; solid dispersion

 

Abstrak

Plutella xylostella, rama-rama berlian (DBM), telah menjadi salah satu serangga yang paling mencabar untuk dikawal di dunia setakat ini. Kaedah kawalan mesra alam, seperti penggunaan racun serangga botani, tersedia. Formulasi yang boleh mengekalkan tahap sebatian utama diperlukan, yang boleh dicapai melalui nanoformulasi pepejal. Matlamat penyelidikan ini adalah untuk menguji dan menilai keupayaan nanozarah minyak cengkih yang dihasilkan daripada polietilena glikol 6000 (PEG 6000) mengawal DBM menggunakan teknik penyebaran pepejal. Bioassay melalui kaedah celup daun di makmal digunakan untuk menguji kesan maut nanozarah minyak cengkih (CO-NPs) pada DBM. Nanoformulasi minyak cengkih berjaya kerana ia menghasilkan nanozarah (diameter 179.98 nm) sambil mengekalkan tahap tinggi komponen aktif eugenol. Nanozarah minyak cengkih boleh meningkatkan ketoksikan minyak cengkih kepada DBM, dilihat daripada nilai LC50 selepas 24 jam rawatan. Nilai LC50 untuk nanozarah minyak cengkih selepas 24 dan 48 jam rawatan masing-masing adalah 10.308 dan 9.451%.

 

Kata kunci: Formulasi nano; minyak cengkih; penyebaran pepejal; Plutella xylostella; racun serangga botani

 

REFERENCES

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.

Baghel, S., Cathcart, H. & O’Reilly, N.J. 2016. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class ii drugs. Journal of Pharmaceutical Sciences 105(9): 2527-2544.

Balaji, A.P.B., Mishra, P., Suresh Kumar, R.S., Ashu, A., Margulis, K., Magdassi, S., Mukherjee, A. & Chandrasekaran, N. 2015. The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bulletin of Environmental Contamination and Toxicology 95(6): 734-739.

Balakrishnan, V., Asifa, K.P. & Chitra, K. C. 2014. Genotoxic potential of nonylphenol in freshwater fish, Oreochromis mossambicus. International Journal of Applied and Natural Sciences 3(2): 81-88.

Cui, B., Lv, Y., Gao, F., Wang, C., Zeng, Z., Wang, Y., Sun, C., Zhao, X., Shen, Y., Liu, G. & Cui, H. 2019. Improving abamectin bioavailability via nanosuspension constructed by wet milling technique. Pest Management Science 75(10): 2756-2764.

D’souza, A.A. & Shegokar, R. 2016. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery 13(9): 1257-1275.

da Costa, J.T., Forim, M.R., Costa, E.S., De Souza, J.R., Mondego, J.M. & Boiça Junior, A.L. 2014. Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. Journal of Stored Products Research 56: 49-53.

Dannenfelser, R.M., He, H., Joshi, Y., Bateman, S. & Serajuddin, A.T.M. 2004. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol–polysorbate 80 solid dispersion carrier system. Journal of Pharmaceutical Sciences 93(5): 1165-1175.

Das, S.K., Roy, S., Yuvaraja, K., Khanam, J., Kalimuthu, Y. & Nanda, A. 2012. Solid dispersions: An approach to enhance the bioavailability of poorly water-soluble drugs. International Journal of Pharmacology and Pharmaceutical Technology 1: 2277-3436.

Durán-Lara, E.F., Valderrama, A. & Marican, A. 2020. Natural organic compounds for application in organic farming. Agriculture 10(2): 41.

González, J.O.W., Gutiérrez, M.M., Ferrero, A.A. & Fernández Band, B. 2014. Essential oils nanoformulations for stored-product pest control - Characterization and biological properties. Chemosphere 100: 130-138.

Gross, A.D., Kimber, M.J., Day, T.A., Ribeiro, P. & Coats, J.R. 2014. Investigating the effect of plant essential oils against the American cockroach octopamine receptor (Pa oa1) expressed in yeast. ACS Symposium Series 1172: 113-130.

Halake, K., Birajdar, M., Kim, B.S., Bae, H., Lee, C.C., Kim, Y.J., Kim, S., Kim, H.J., Ahn, S., An, S.Y. & Lee, J. 2014. Recent application developments of water-soluble synthetic polymers. Journal of Industrial and Engineering Chemistry 20(6): 3913-3918.

Hossain, M.A., Al-Hashmi, R.A., Weli, A.M., Al-Riyami, Q. & Al-Sabahib, J.N. 2012. Constituents of the essential oil from different brands of Syzigium caryophyllatum L by gas chromatography–mass spectrometry. Asian Pacific Journal of Tropical Biomedicine 2(3): S1446-S1449.

Ikawati, S., Himawan, T., Abadi, A.L. & Tarno, H. 2020. Thermostability, photostability, and toxicity of clove oil nanoparticles against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Biodiversitas21(10): 4764-4771.

Ikawati, S., Himawan, T., Abadi, A.L. & Tarno, H. 2021a. Characterization of clove oil nanoparticles and their insecticidal activity against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Agrivita 43(1): 43-55.

Ikawati, S., Himawan, T., Abadi, A.L. & Tarno, H. 2021b. Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). Journal of Pesticide Science 46(2): 222-228.

Isman, M.B. 2016. Pesticides based on plant essential oils: Phytochemical and practical considerations. Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. American Chemical Society 2: 13-26.

Kacar, G. 2018. Characterizing the structure and properties of dry and wet polyethylene glycol using multi-scale simulations. Physical Chemistry Chemical Physics 20(17): 12303-12311.

Kafle, L. & Shih, C.J. 2013. Toxicity and repellency of compounds from clove (Syzygium aromaticum) to red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Journal of Economic Entomology 106(1): 131-135.

Kah, M., Kookana, R.S., Gogos, A. & Bucheli, T.D. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13(8): 677-684.

Kanaujia, P., Poovizhi, P., Ng, W.K. & Tan, R.B.H. 2015. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technology 285: 2-15.

Koh, P.T., Chuah, J.N., Talekar, M., Gorajana, A. & Garg, S. 2013. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian Journal of Pharmaceutical Sciences 75(3): 291-301.

Labuschagne, P. 2018. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International 107: 227-247.

Li, X., Li, R., Zhu, B., Gao, X. & Liang, P. 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Management Science 74(6): 1386-1393.

Nobbmann, U. 2014. Polydispersity – what does it mean for DLS and chromatography? Malvern Instruments.

Nuruzzaman, M., Rahman, M.M., Liu, Y. & Naidu, R. 2016. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry 64(7): 1447-1483.

de Oliveira, J.L., Campos, E.V.R., Germano-Costa, T., Lima, R., Vechia, J.F.D., Soares, S.T., de Andrade,

D.J., Gonçalves, K.C., do Nascimento, J., Polanczyk, R.A. & Fraceto, L.F. 2019. Association of zein nanoparticles with botanical compounds for effective pest control systems. Pest Management Science 75(7): 1855-1865.

Pinheiro, P.F., de Queiroz, V.T., Rondelli, V.M., Costa, A.V., de Paula Marcelino, T. & Pratissoli, D. 2013. Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Ciência e Agrotecnologia 37(2). https://doi.org/10.1590/S1413-70542013000200004

Saini, P., Gopal, M., Kumar, R. & Srivastava, C. 2014. Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). Journal of Environmental Science and Health, Part B 49(5): 344-351.

Singh, R. & Dutta, S. 2018. Synthesis and characterization of solar photoactive TiO2 nanoparticles with enhanced structural and optical properties. Advanced Powder Technology 29(2): 211-219.

Sinha, B., Müller, R.H. & Möschwitzer, J.P. 2013. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. International Journal of Pharmaceutics 453(1): 126-141.

Talekar, N.S. & Shelton, A.M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38(1): 275-301.

Widayat, Cahyono, B., Hadiyanto, & Hadiyanto. 2014. Improvement of clove oil quality by using adsorption-distillation process. Research Journal of Applied Sciences, Engineering and Technology 7(18): 3867-3871.

Wünsch, A., Mulac, D. & Langer, K. 2021. Lecithin coating as universal stabilization and functionalization strategy for nanosized drug carriers to overcome the blood–brain barrier. International Journal of Pharmaceutics 593: 120146.

Xia, X., Sun, B., Gurr, G.M., Vasseur, L., Xue, M. & You, M. 2018. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology 9: 25.

Yang, F.L., Li, X.G., Zhu, F. & Lei, C.L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57(21): 10156-10162.

Zalucki, M.P., Shabbir, A., Silva, R., Adamson, D., Liu, S.S. & Furlong, M.J. 2012. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (lepidoptera: Plutellidae): Just how long is a piece of string? Journal of Economic Entomology 105(4): 1115-1129.

 

*Corresponding author; email: silviikawati@ub.ac.id

 

 

 

 

previous