Sains Malaysiana 52(5)(2023): 1419-1434

http://doi.org/10.17576/jsm-2023-5205-08

 

Effect of Arginine-Based Deep Eutectic Solvents on Supported Porous Sorbent for CO2 Capture Analysis

(Kesan Pelarut Eutektik Dalam Berasaskan Arginina pada Bahan Penjerap Poros Berpenyokong untuk Analisis Penangkapan CO2)

           

NABILAH SUHAILI1,2,LEE WAH LIM2, LEE PENG TEH1, SITI NURZUBAIDA SHAHDAN1, ZAITUN GHAZALI3 MANABU MIYAMOTO2, SHIGEYUKI UEMIYA2 & RIZAFIZAH OTHAMAN1,4,*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Graduated School of Engineering, Faculty Engineering, Gifu University, 1-1 Yanagido, Gifu-Shi, 501-1193, Japan

3Institute of Teacher Education, Technical Education Campus, Bandar Enstek, 71760 Nilai, Negeri Sembilan Darul Khusus, Malaysia

4Polymer Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 February 2023/Accepted: 8 May 2023

 

Abstract

Carbon dioxide (CO2) as one of the heat-trapping gases, has caused global warming. Being a greener and more economical material, amino acid-based deep eutectic solvents (AADES) have attracted interest in CO2 capture applications. In this paper, the effect of L-arginine (Arg) in binary AADES of arginine-ethylene glycol (Arg-EG) and ternary AADES of choline chloride-ethylene glycol-arginine (ChCl-EG-Arg) on adsorption of CO2 was studied. The solubility, basicity, and physicochemical characteristics were compared with the binary DES (ChCl-EG) before and after being impregnated into a silica gel (SG) via the wet impregnation method. The AADES/SG adsorbents were evaluated for CO2 sorption performance using an automated gas sorption analyzer at 100% CO2 loading and thermogravimetric analysis (TGA) at flue gas conditions (15% CO2/85% N2). Findings show the basicity and the nitrogen content (N%) of AADES/SG were increased as Arg was added and DES/AADES functional group peaks (amino, hydroxyl, alkyl groups) were observed after the impregnation. The CO2 sorption of 16.0 mg/g at 25 °C and 1 atm was achieved by 30% Arg-EG(1:8)/SG followed by 30% ChCl-EG-Arg (1:2:0.1)/SG (14.8 mg/g) and 30% ChCl-EG/SG(1:2) (14.5 mg/g) using an Autosorb iQ2 instruments with 100% CO2 loading. The CO2 uptake was increased almost linearly with increasing pressure and decreased with increasing temperature. The  Arg-EG(1:8)/SG shows the highest selectivity toward CO2 than other sorbents with 8.10 mg/g adsorption for 1 h at 15% CO2 loading at 25 °C with higher thermal stability and surface area. Considering environmental, technological, and economic viewpoints, the Arg-EG(1:8)/SG can be explored more as a potential solid sorbent for CO2 capture.

 

Keywords: Amino acid; carbon dioxide adsorption; deep eutectic solvent; silica sorbent; wet-impregnation

 

Abstrak

Karbon dioksida (CO2) sebagai salah satu gas perangkap haba telah menyebabkan pemanasan global. Sebagai bahan yang lebih hijau dan lebih menjimatkan, pelarut eutektik dalam berasaskan asid amino (AADES) telah menarik minat dalam aplikasi penangkapan CO2. Dalam kajian ini, kesan L-arginina (Arg) dalam AADES binari bagi arginina-etilena glikol (Arg-EG) dan ternari AADES bagi klorida kolina-etilena glikol arginina (ChCl-EG-Arg) terhadap penjerapan CO2 telah dikaji. Kelarutan, kebesan dan ciri-ciri fizikokimia sebelum dan selepas diisi ke dalam gel silika (SG) melalui kaedah pengisitepuan basah telah dibandingkan dengan binari DES (ChCl-EG). Penjerap AADES/SG telah dinilai untuk prestasi penjerapan CO2 menggunakan analisis penjerapan gas automatik pada 100% muatan CO2 dan analisis termogravimetri (TGA) pada keadaan gas serombong (15% CO2/85% N2). Penemuan menunjukkan bahawa kebesan dan kandungan nitrogen (N%) AADES telah meningkat apabila Arg ditambah dan puncak kumpulan berfungsi AADES (kumpulan amino, hidroksi dan alkil) telah diperhatikan selepas pengisitepuan. Penjerapan CO2 sebanyak 16.0 mg/g pada 25 °C dan 1 atm telah dicapai oleh 30% Arg-EG(1:8)/SG diikuti oleh 30% ChCl-EG/SG(1:2) (14.5 mg/g) menggunakan instrument Autosorb iQ2 dengan 100% muatan CO2. Penjerapan CO2 meningkat secara linear dengan peningkatan tekanan dan berkurang dengan peningkatan suhu. Arg-EG(1:8)/SG menunjukkan kepilihan tertinggi terhadap CO2 berbanding dengan penjerap lain dengan penjerapan sebanyak 8.10 mg/g selama 1 jam pada 15% muatan CO2 pada 25 °C dengan kestabilan termal dan kawasan permukaan yang lebih tinggi. Mengambil kira sudut alam sekitar, teknologi dan ekonomi, Arg-EG(1:8)/SG boleh diteroka lebih lanjut sebagai penjerap pepejal yang berpotensi untuk penangkapan CO2.

 

Kata kunci: Asid amino; pelarut eutektik dalam; pengisitepuan basah; penjerapan karbon dioksida; penjerap silika

 

REFERENCES

Abbas, Q. & Binder, L. 2010. Synthesis and characterization of choline chloride based binary mixtures. ECS Transaction 33(7): 49-59.

Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K. & Tambyrajah, V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications. 1: 70-71.

Al-Absi, A.A., Domin, A., Mohamedali, M., Benneker, A.M. & Mahinpey, N. 2023. CO2 capture using in-situ polymerized amines into pore-expanded-SBA-15: Performance evaluation, kinetics, and adsorption isotherms. Fuel 333: 126401.

Ariyanto, T., Masruroh, K., Pambayun, G.Y.S., Mukti, N.I.F., Cahyono, R.B., Prasetya, A. & Prasetyo, I. 2021. Improving the separation of CO2/CH4 using impregnation of deep eutectic solvents on porous carbon. ACS Omega 6(29): 19194-19201.

Chemat, F., Anjum, H., Shariff, A.M., Kumar, P. & Murugesan, T. 2016a. Thermal and physical properties of (Choline chloride + urea + l-arginine) deep eutectic solvents. Journal of Molecular Liquids 218: 301-308.

Chemat, F., Gnanasundaram, N., Shariff, A.M. & Murugesan, T. 2016b. Effect of L-arginine on solubility of CO2 in choline chloride + glycerol based deep eutectic solvents. Procedia Eng. 148: 236-242.

Delgado-Mellado, N., Larriba, M., Navarro, P., Rigual, V., Ayuso, M., Garcia, J. & Rodriguez, F. 2018. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids 260: 37-43.

ESRL. 2022. Trends in Atmospheric Carbon Dioxide. USA: Earth System Research Laboratories.

Fauth, D.J., Gray, M.L., Pennline, H.W., Krutka, H.M., Sjostrom, S. & Ault, A.M. 2012. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture. Energy and Fuels 26(4): 2483-2496.

Francisco, M., van den Bruinhorst, A. & Kroon, M.C. 2013. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie International Edition 52(11): 3074-3085.

Ghazali, Z., Suhaili, N., Tahari, M.N.A., Yarmo, M.A., Hassan, N.H. & Othaman, R. 2020a. Impregnating deep eutectic solvent choline chloride:urea:polyethyleneimine onto mesoporous silica gel for carbon dioxide capture. Journal of Mater Research and Technology 9(3): 3249-3260.

Ghazali, Z., Yarmo, M.A., Hassan, N.H., Teh, L.P. & Othaman, R. 2020b. New green adsorbent for capturing carbon dioxide by choline chloride: Urea-confined nanoporous silica. Arabian Journal for Science and Engineering 45(6): 4621-4634.

Ghazali, Z., Hassan, N.H., Yarmo, M.A., Peng, T.L. & Othaman, R. 2019. Immobilization of choline chloride: Urea onto mesoporous silica for carbon dioxide capture. Sains Malaysiana 48(5): 1025-1033.

González-Rivera, J., Pelosi, C., Pulidori, E., Duce, C., Tiné, M.R., Ciancaleoni, G. & Bernazzani, L. 2022. Guidelines for a correct evaluation of deep eutectic solvents thermal stability. Current Research in Green Sustainable Chemistry 5: 100333.

Haider, M.B., Jha, D., Sivagnanam, B.M. & Kumar, R. 2018. Thermodynamic and kinetic studies of CO2 capture by glycol and amine-based deep eutectic solvents. Journal of Chemical & Engineering Data 63(8): 2671-2680.

Jiang, B., Wang, X., Gray, M.L., Duan, Y., Luebke, D. & Li, B. 2013. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Applied Energy 109: 112-118.

Khdary, N.H. & Abdelsalam, M.E. 2020. Polymer-silica nanocomposite membranes for CO2 capturing. Arabian Journal of Chemistry 13(1): 557-567.

Kim, S.N., Son, W.J., Choi, J.S. & Ahn, W.S. 2008. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous Mesoporous Materials 115(3): 497-503.

Lahuri, A.H. & Yarmo, M.A. 2022. Study of CO2 Adsorption time for carbonate species and linear CO2 formations onto bimetallic CaO/Fe2O3 by infrared spectroscopy. Sains Malaysiana 51(2): 507-517.

Li, B., Chen, Y., Yang, Z., Ji, X. & Lu, X. 2019. Thermodynamic study on carbon dioxide absorption in aqueous solutions of choline-based amino acid ionic liquids. Separation and Purification Technology 214: 128-138.

Li, Z., Wang, L., Li, C., Cui, Y., Li, S., Yang, G. & Shen, Y. 2019. Absorption of carbon dioxide using ethanolamine-based eutectic solvents. ACS Sustain Chem. Eng. 7(12): 10403-10414.

Lian, S., Li, R., Zhang, Z., Liu, Q., Song, C. & Lu, S. 2021. Improved CO2 separation performance and interfacial affinity of composite membranes by incorporating amino acid-based deep eutectic solvents. Separation and Purification Technology 272: 118953.

Madden, D., Curtin, T., Hanrahan, J.P. & Tobin, J. 2016. CO2 sorption performance by aminosilane functionalized spheres prepared via co-condensation and post-synthesis methods. AIChE Journal 62(8): 2825-2832.

Mahmud, N., Benamor, A., Nasser, M., El-Naas, M.H. & Tontiwachwuthikul, P. 2019. Reaction kinetics of carbon dioxide in aqueous blends of n-methyldiethanolamine and l-arginine using the stopped-flow technique. Processes 7(2): 81.

Marliza, T.S., Yarmo, M.A., Lahuri, A.H. & Taufiq-Yap, Y.H. 2022. CO2 capture using ionic liquid hybrid sorbent: Physical and chemical adsorption-desorption study. Materials Today: Proceedings. 64: 20-26.

Mirza, N., Mumford, K., Wu, Y., Mazhar, S., Kentish, S. & Stevens, G. 2017. Improved eutectic based solvents for capturing carbon dioxide (CO2). Energy Procedia 114: 827-833.

Mohamed Hatta, N.S., Aroua, M.K., Hussin, F. & Gew, L.T. 2022. A systematic review of amino acid-based adsorbents for CO2 capture. Energies 15(10): 3753.

Mohd, N.H., Kargazadeh, H., Miyamoto, M., Uemiya, S., Sharer, N., Baharum, A., Teh, L.P., Ahmad, I., Yarmo, M.A. & Othaman, R. 2021. Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. Journal Mater Research and Technology 13: 2287-2296.

Petrovic, B., Gorbounov, M. & Masoudi Soltani, S. 2021. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Materials 312: 110751.

Raja Shahrom, M.S., Nordin, A.R. & Wilfred, C.D. 2019. The improvement of activated carbon as CO2 adsorbent with supported amine functionalized ionic liquids. Journal of Environmental Chemical Engineering 7(5): 103319.

Rameli, N., Jumbri, K., Ramli, A., Abdul Wahab, R., Ahmad, H. & Abdul Rahman, M.B. 2022. Mesoporous silica nanoparticle-templated ionic liquid as a drug carrier for ibuprofen and quercetin. Sains Malaysiana 51(8): 2473-2493.

Ren, H., Lian, S., Wang, X., Zhang, Y. & Duan, E. 2018. Exploiting the hydrophilic role of natural deep eutectic solvents for greening CO2 capture. Journal of Cleaner Production 193: 802-810.

Saha, A. 2018. Structure-function, recyclability and calorimetry studies of CO2 adsorption on some amine modified Type I & Type II sorbents. International Journal Greenhouse Gas Control 78: 198-209.

Sánchez-Zambrano, K.S., Duarte, L.L., Maia, D.A.S., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E. & Azevedo, D.C.S. 2018. CO2 capture with mesoporous silicas modified with amines by double functionalization: Assessment of adsorption/desorption cycles. Materials 11(6): 887.

Sang Sefidi, V. & Luis, P. 2019. Advanced amino acid-based technologies for CO2 capture: A review. Industrial & Engineering Chemistry Research 58(44): 20181-20194.

Sarmad, S., Xie, Y., Mikkola, J.P. & Ji, X. 2017. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: From solubility to viscosity. New Journal of Chemistry 41(1): 290-301.

Shao, J., Ma, C., Zhao, J., Wang, L. & Hu, X. 2022. Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid. Colloids and Surfaces A: Physicochemical Engineering Aspects 632: 127750.

Sivrikaya, S. 2019. A novel vortex-assisted liquid phase microextraction method for parabens in cosmetic oil products using deep eutectic solvent. International Journal of Environmental Analytical Chemistry 99(15): 1575-1585.

Song, H.J., Park, S., Kim, H., Gaur, A., Park, J.W. & Lee, S.J. 2012. Carbon dioxide absorption characteristics of aqueous amino acid salt solutions. International Journal of Greenhouse Gas Control 11: 64-72.

Sotomayor, F., Cychosz, K.A. & Thommes, M. 2018. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Accounts of Materials & Surface Research 3(2): 34-50.

Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051-1069.

Uehara, Y., Karami, D. & Mahinpey, N. 2017. Effect of water vapor on CO2 sorption-desorption behaviors of supported amino acid ionic liquid sorbents on porous microspheres. Industrial and Engineering Chemistry Research 56(48): 14316-14323.

Uehara, Y., Karami, D. & Mahinpey, N. 2019. Amino acid ionic liquid-modified mesoporous silica sorbents with remaining surfactant for CO2 capture. Adsorption 25(4): 703-716.

Wang, L. & Yang, R.T. 2011. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. The Journal of Physical Chemistry 115(43): 21264-21272.

Wang, X., Akhmedov, N.G., Duan, Y., Luebke, D., Hopkinson, D. & Li, B. 2013. Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture. ACS Applied Materials Interfaces 5(17): 8670-8677.

Wang, Y., Zhao, L., Otto, A., Robinius, M. & Stolten, D. 2017. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114: 650-665.

Weiss, I.M., Muth, C., Drumm, R. & Kirchner, H.O.K. 2018. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophysics 11(1): 1-15.

Yu, Q., Bai, J., Huang, J., Demir, M., Altay, B.N., Hu, X. & Wang, L. 2022. One-pot synthesis of N-rich porous carbon for efficient CO2 adsorption performance. Molecules 27: 6816.

Yusof, S.M., Othaman, R., Setiabudi, H.D. & Teh, L.P. 2021. Modified fibrous silica for enhanced carbon dioxide adsorption: Role of metal oxides on physicochemical properties and adsorption performance. Journal of Solid State Chemistry 294: 121845.

Zhang, G., Zhao, P. & Xu, Y. 2017. Development of amine-functionalized hierarchically porous silica for CO2 capture. Journal of Industrial and Engineering Chemistry 54: 59-68.

Zhu, N., Chiou, M.F., Xiong, H., Su, M., Su, M., Li, Y., Wan, W.M. & Bao, H. 2020. The introduction of the radical cascade reaction into polymer chemistry: A one-step strategy for synchronized polymerization and modification. iScience 23(3): 100902.

 

*Corresponding author; email: rizafizah@ukm.edu.my

 

 

 

 

previous