Sains Malaysiana 52(5)(2023):
1419-1434
http://doi.org/10.17576/jsm-2023-5205-08
Effect of Arginine-Based Deep Eutectic
Solvents on Supported Porous Sorbent for CO2 Capture Analysis
(Kesan Pelarut Eutektik Dalam Berasaskan
Arginina pada Bahan Penjerap Poros Berpenyokong untuk Analisis Penangkapan CO2)
NABILAH SUHAILI1,2,LEE
WAH LIM2, LEE PENG TEH1, SITI NURZUBAIDA SHAHDAN1,
ZAITUN GHAZALI3 MANABU MIYAMOTO2, SHIGEYUKI UEMIYA2 & RIZAFIZAH OTHAMAN1,4,*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Graduated
School of Engineering, Faculty Engineering, Gifu University, 1-1 Yanagido,
Gifu-Shi, 501-1193, Japan
3Institute
of Teacher Education, Technical Education Campus, Bandar Enstek, 71760 Nilai,
Negeri Sembilan Darul Khusus, Malaysia
4Polymer
Research Center (PORCE), Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
28 February 2023/Accepted: 8 May 2023
Abstract
Carbon dioxide (CO2)
as one of the heat-trapping gases, has caused global warming. Being a greener
and more economical material, amino acid-based deep eutectic solvents (AADES) have attracted interest in CO2 capture
applications. In
this paper, the effect of L-arginine (Arg) in binary AADES of arginine-ethylene
glycol (Arg-EG) and ternary AADES of choline chloride-ethylene glycol-arginine
(ChCl-EG-Arg) on adsorption of CO2 was studied. The solubility, basicity, and physicochemical characteristics were compared
with the binary DES (ChCl-EG) before and after being impregnated into a silica gel
(SG) via the wet impregnation method. The AADES/SG adsorbents were evaluated
for CO2 sorption performance using an automated gas sorption
analyzer at 100% CO2 loading and thermogravimetric analysis (TGA) at
flue gas conditions (15% CO2/85% N2). Findings show the
basicity and the nitrogen content (N%) of AADES/SG were increased as Arg was
added and DES/AADES functional group peaks (amino, hydroxyl, alkyl groups) were
observed after the impregnation. The CO2 sorption of 16.0 mg/g at 25 °C and 1 atm was achieved by 30% Arg-EG(1:8)/SG
followed by 30% ChCl-EG-Arg (1:2:0.1)/SG (14.8 mg/g) and 30% ChCl-EG/SG(1:2)
(14.5 mg/g) using an Autosorb
iQ2 instruments with 100% CO2 loading. The CO2 uptake was increased almost linearly with increasing pressure and decreased
with increasing temperature. The Arg-EG(1:8)/SG shows the highest selectivity
toward CO2 than other sorbents with 8.10 mg/g adsorption for 1 h at
15% CO2 loading at 25 °C with higher
thermal stability and surface area. Considering environmental, technological,
and economic viewpoints, the Arg-EG(1:8)/SG can be explored more as a potential
solid sorbent for CO2 capture.
Keywords: Amino acid; carbon dioxide
adsorption; deep eutectic solvent; silica sorbent; wet-impregnation
Abstrak
Karbon dioksida (CO2) sebagai salah satu gas perangkap haba
telah menyebabkan pemanasan global. Sebagai bahan yang lebih hijau dan lebih
menjimatkan, pelarut eutektik dalam berasaskan asid amino (AADES) telah menarik
minat dalam aplikasi penangkapan CO2. Dalam kajian ini, kesan
L-arginina (Arg) dalam AADES binari bagi arginina-etilena glikol (Arg-EG) dan
ternari AADES bagi klorida kolina-etilena glikol arginina (ChCl-EG-Arg) terhadap
penjerapan CO2 telah dikaji. Kelarutan, kebesan dan ciri-ciri
fizikokimia sebelum dan selepas diisi ke dalam gel silika (SG) melalui kaedah
pengisitepuan basah telah dibandingkan dengan binari DES (ChCl-EG). Penjerap
AADES/SG telah dinilai untuk prestasi penjerapan CO2 menggunakan
analisis penjerapan gas automatik pada 100% muatan CO2 dan analisis
termogravimetri (TGA) pada keadaan gas serombong (15% CO2/85% N2).
Penemuan menunjukkan bahawa kebesan dan kandungan nitrogen (N%) AADES telah
meningkat apabila Arg ditambah dan puncak kumpulan berfungsi AADES (kumpulan amino,
hidroksi dan alkil) telah diperhatikan
selepas pengisitepuan. Penjerapan CO2 sebanyak 16.0 mg/g pada 25 °C
dan 1 atm telah dicapai oleh 30% Arg-EG(1:8)/SG diikuti oleh 30% ChCl-EG/SG(1:2)
(14.5 mg/g) menggunakan instrument Autosorb iQ2 dengan 100% muatan CO2. Penjerapan CO2 meningkat secara linear
dengan peningkatan tekanan dan berkurang dengan peningkatan suhu.
Arg-EG(1:8)/SG menunjukkan kepilihan tertinggi terhadap CO2 berbanding dengan penjerap lain dengan penjerapan sebanyak 8.10 mg/g selama 1
jam pada 15% muatan CO2 pada 25 °C dengan kestabilan termal dan
kawasan permukaan yang lebih tinggi. Mengambil kira sudut alam sekitar,
teknologi dan ekonomi, Arg-EG(1:8)/SG boleh diteroka lebih lanjut sebagai
penjerap pepejal yang berpotensi untuk penangkapan CO2.
Kata kunci: Asid amino; pelarut eutektik dalam;
pengisitepuan basah; penjerapan karbon dioksida; penjerap silika
REFERENCES
Abbas, Q. &
Binder, L. 2010. Synthesis and characterization of choline chloride based
binary mixtures. ECS Transaction 33(7): 49-59.
Abbott, A.P., Capper, G., Davies,
D.L., Rasheed, R.K. & Tambyrajah, V. 2003. Novel solvent properties of
choline chloride/urea mixtures. Chemical
Communications. 1: 70-71.
Al-Absi, A.A., Domin,
A., Mohamedali, M., Benneker, A.M. & Mahinpey, N. 2023. CO2 capture using in-situ polymerized
amines into pore-expanded-SBA-15: Performance evaluation, kinetics, and
adsorption isotherms. Fuel 333:
126401.
Ariyanto, T., Masruroh, K., Pambayun, G.Y.S.,
Mukti, N.I.F., Cahyono, R.B., Prasetya, A. & Prasetyo, I. 2021. Improving
the separation of CO2/CH4 using impregnation of deep
eutectic solvents on porous carbon. ACS Omega 6(29): 19194-19201.
Chemat, F., Anjum, H.,
Shariff, A.M., Kumar, P. & Murugesan, T. 2016a. Thermal and physical
properties of (Choline chloride + urea + l-arginine) deep eutectic solvents. Journal
of Molecular Liquids 218: 301-308.
Chemat, F.,
Gnanasundaram, N., Shariff, A.M. & Murugesan, T. 2016b. Effect of
L-arginine on solubility of CO2 in choline chloride + glycerol based
deep eutectic solvents. Procedia Eng. 148: 236-242.
Delgado-Mellado, N.,
Larriba, M., Navarro, P., Rigual, V., Ayuso, M., Garcia, J. & Rodriguez, F.
2018. Thermal stability of choline chloride deep eutectic solvents by
TGA/FTIR-ATR analysis. Journal of
Molecular Liquids 260:
37-43.
ESRL. 2022. Trends
in Atmospheric Carbon Dioxide. USA: Earth System Research Laboratories.
Fauth, D.J., Gray,
M.L., Pennline, H.W., Krutka, H.M., Sjostrom, S. & Ault, A.M. 2012.
Investigation of porous silica supported mixed-amine sorbents for
post-combustion CO2 capture. Energy
and Fuels 26(4): 2483-2496.
Francisco, M., van den
Bruinhorst, A. & Kroon, M.C. 2013. Low-transition-temperature mixtures (LTTMs): A new generation of
designer solvents. Angewandte Chemie
International Edition 52(11):
3074-3085.
Ghazali, Z., Suhaili,
N., Tahari, M.N.A., Yarmo, M.A., Hassan, N.H. & Othaman, R. 2020a.
Impregnating deep eutectic solvent choline chloride:urea:polyethyleneimine onto
mesoporous silica gel for carbon dioxide capture. Journal of Mater Research and Technology 9(3): 3249-3260.
Ghazali, Z., Yarmo,
M.A., Hassan, N.H., Teh, L.P. & Othaman, R. 2020b. New green adsorbent for capturing carbon dioxide by
choline chloride: Urea-confined nanoporous silica. Arabian Journal for Science and Engineering 45(6): 4621-4634.
Ghazali, Z., Hassan,
N.H., Yarmo, M.A., Peng, T.L. & Othaman, R. 2019. Immobilization of choline
chloride: Urea onto mesoporous silica for carbon dioxide capture. Sains Malaysiana 48(5): 1025-1033.
González-Rivera, J.,
Pelosi, C., Pulidori, E., Duce, C., Tiné, M.R., Ciancaleoni, G. &
Bernazzani, L. 2022. Guidelines
for a correct evaluation of deep eutectic solvents thermal stability. Current Research in Green Sustainable
Chemistry 5: 100333.
Haider, M.B., Jha, D., Sivagnanam, B.M. & Kumar, R. 2018.
Thermodynamic and kinetic studies of CO2 capture by glycol and
amine-based deep eutectic solvents. Journal of Chemical
& Engineering Data 63(8): 2671-2680.
Jiang, B., Wang, X.,
Gray, M.L., Duan, Y., Luebke, D. & Li, B. 2013. Development of amino acid
and amino acid-complex based solid sorbents for CO2 capture. Applied Energy 109: 112-118.
Khdary, N.H. &
Abdelsalam, M.E. 2020. Polymer-silica nanocomposite membranes for CO2 capturing. Arabian Journal of Chemistry 13(1):
557-567.
Kim, S.N., Son, W.J.,
Choi, J.S. & Ahn, W.S. 2008. CO2 adsorption using
amine-functionalized mesoporous silica prepared via anionic surfactant-mediated
synthesis. Microporous Mesoporous
Materials 115(3): 497-503.
Lahuri, A.H. & Yarmo, M.A. 2022. Study of CO2 Adsorption
time for carbonate species and linear CO2 formations onto bimetallic
CaO/Fe2O3 by infrared spectroscopy. Sains Malaysiana 51(2): 507-517.
Li, B., Chen, Y.,
Yang, Z., Ji, X. & Lu, X. 2019. Thermodynamic study on carbon dioxide
absorption in aqueous solutions of choline-based amino acid ionic liquids. Separation and Purification Technology 214: 128-138.
Li, Z., Wang, L., Li, C., Cui, Y., Li, S., Yang, G.
& Shen, Y. 2019. Absorption of carbon dioxide using ethanolamine-based
eutectic solvents. ACS Sustain Chem. Eng. 7(12): 10403-10414.
Lian, S., Li, R.,
Zhang, Z., Liu, Q., Song, C. & Lu, S. 2021. Improved CO2 separation performance and interfacial affinity of composite membranes by
incorporating amino acid-based deep eutectic solvents. Separation and Purification Technology 272: 118953.
Madden, D., Curtin,
T., Hanrahan, J.P. & Tobin, J. 2016. CO2 sorption performance by
aminosilane functionalized spheres prepared via co-condensation and
post-synthesis methods. AIChE Journal 62(8): 2825-2832.
Mahmud, N., Benamor, A., Nasser, M., El-Naas, M.H. &
Tontiwachwuthikul, P. 2019. Reaction kinetics of carbon dioxide in aqueous
blends of n-methyldiethanolamine and l-arginine using the stopped-flow
technique. Processes 7(2): 81.
Marliza, T.S., Yarmo,
M.A., Lahuri, A.H. & Taufiq-Yap, Y.H. 2022. CO2 capture using
ionic liquid hybrid sorbent: Physical and chemical adsorption-desorption study. Materials Today: Proceedings. 64:
20-26.
Mirza, N., Mumford, K., Wu, Y., Mazhar, S.,
Kentish, S. & Stevens, G. 2017. Improved eutectic based solvents for
capturing carbon dioxide (CO2). Energy Procedia 114: 827-833.
Mohamed Hatta, N.S.,
Aroua, M.K., Hussin, F. & Gew, L.T. 2022. A systematic review of amino
acid-based adsorbents for CO2 capture. Energies 15(10): 3753.
Mohd, N.H.,
Kargazadeh, H., Miyamoto, M., Uemiya, S., Sharer, N., Baharum, A., Teh, L.P.,
Ahmad, I., Yarmo, M.A. & Othaman, R. 2021. Aminosilanes grafted
nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon
dioxide capture. Journal Mater Research
and Technology 13: 2287-2296.
Petrovic, B.,
Gorbounov, M. & Masoudi Soltani, S. 2021. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous Mesoporous Materials 312: 110751.
Raja Shahrom, M.S.,
Nordin, A.R. & Wilfred, C.D. 2019. The improvement of activated carbon as CO2 adsorbent with
supported amine functionalized ionic liquids. Journal of Environmental
Chemical Engineering 7(5): 103319.
Rameli, N., Jumbri,
K., Ramli, A., Abdul Wahab, R., Ahmad, H. & Abdul Rahman, M.B. 2022.
Mesoporous silica nanoparticle-templated ionic liquid as a drug carrier for
ibuprofen and quercetin. Sains Malaysiana 51(8): 2473-2493.
Ren, H., Lian, S.,
Wang, X., Zhang, Y. & Duan, E. 2018. Exploiting the hydrophilic role of
natural deep eutectic solvents for greening CO2 capture. Journal of Cleaner Production 193: 802-810.
Saha, A. 2018.
Structure-function, recyclability and calorimetry studies of CO2 adsorption on some amine modified Type I & Type II sorbents. International Journal Greenhouse Gas Control 78: 198-209.
Sánchez-Zambrano,
K.S., Duarte, L.L., Maia, D.A.S., Vilarrasa-García, E., Bastos-Neto, M.,
Rodríguez-Castellón, E. & Azevedo, D.C.S. 2018. CO2 capture with mesoporous silicas modified
with amines by double functionalization: Assessment of adsorption/desorption
cycles. Materials 11(6): 887.
Sang Sefidi, V. & Luis, P. 2019. Advanced amino acid-based
technologies for CO2 capture: A review. Industrial
& Engineering Chemistry Research 58(44):
20181-20194.
Sarmad,
S., Xie, Y., Mikkola, J.P. & Ji, X. 2017. Screening of deep eutectic
solvents (DESs) as green CO2 sorbents: From solubility to viscosity. New Journal of Chemistry 41(1): 290-301.
Shao,
J., Ma, C., Zhao, J., Wang, L. & Hu, X. 2022. Effective nitrogen and sulfur
co-doped porous carbonaceous CO2 adsorbents derived from amino acid. Colloids and Surfaces A: Physicochemical
Engineering Aspects 632: 127750.
Sivrikaya, S. 2019. A novel vortex-assisted liquid
phase microextraction method for parabens in cosmetic oil products using deep
eutectic solvent. International Journal
of Environmental Analytical Chemistry 99(15): 1575-1585.
Song, H.J., Park, S.,
Kim, H., Gaur, A., Park, J.W. & Lee, S.J. 2012. Carbon dioxide absorption
characteristics of aqueous amino acid salt solutions. International Journal
of Greenhouse Gas Control 11: 64-72.
Sotomayor, F.,
Cychosz, K.A. & Thommes, M. 2018. Characterization of micro/mesoporous
materials by physisorption: Concepts and case studies. Accounts of Materials & Surface Research 3(2): 34-50.
Thommes, M., Kaneko,
K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. &
Sing, S.W. 2015. Physisorption
of gases, with special reference to the evaluation of surface area and pore
size distribution (IUPAC Technical Report). Pure
and Applied Chemistry 87(9-10): 1051-1069.
Uehara, Y., Karami, D.
& Mahinpey, N. 2017. Effect of water vapor on CO2 sorption-desorption behaviors of supported amino acid ionic liquid sorbents on
porous microspheres. Industrial and
Engineering Chemistry Research 56(48): 14316-14323.
Uehara, Y., Karami, D.
& Mahinpey, N. 2019. Amino acid ionic liquid-modified mesoporous silica
sorbents with remaining surfactant for CO2 capture. Adsorption 25(4): 703-716.
Wang, L. & Yang,
R.T. 2011. Increasing selective CO2 adsorption on amine-grafted
SBA-15 by increasing silanol density. The
Journal of Physical Chemistry 115(43): 21264-21272.
Wang, X., Akhmedov, N.G., Duan, Y., Luebke, D., Hopkinson, D. & Li,
B. 2013. Amino acid-functionalized ionic liquid solid sorbents for
post-combustion carbon capture. ACS Applied Materials
Interfaces 5(17): 8670-8677.
Wang, Y., Zhao, L., Otto, A., Robinius, M. &
Stolten, D. 2017. A review of post-combustion CO2 capture
technologies from coal-fired power plants. Energy Procedia 114: 650-665.
Weiss, I.M., Muth, C.,
Drumm, R. & Kirchner, H.O.K. 2018. Thermal decomposition of the amino acids glycine, cysteine, aspartic
acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophysics 11(1): 1-15.
Yu,
Q., Bai, J., Huang, J., Demir, M., Altay, B.N., Hu, X. & Wang, L. 2022.
One-pot synthesis of N-rich porous carbon for efficient CO2 adsorption
performance. Molecules 27: 6816.
Yusof, S.M., Othaman,
R., Setiabudi, H.D. & Teh, L.P. 2021. Modified fibrous silica for enhanced carbon dioxide adsorption: Role of
metal oxides on physicochemical properties and adsorption performance. Journal of Solid State Chemistry 294: 121845.
Zhang, G., Zhao, P.
& Xu, Y. 2017. Development of amine-functionalized hierarchically porous
silica for CO2 capture. Journal
of Industrial and Engineering Chemistry 54: 59-68.
Zhu, N., Chiou, M.F.,
Xiong, H., Su, M., Su, M., Li, Y., Wan, W.M. & Bao, H. 2020. The
introduction of the radical cascade reaction into polymer chemistry: A one-step
strategy for synchronized polymerization and modification. iScience 23(3): 100902.
*Corresponding author; email: rizafizah@ukm.edu.my
|