Sains Malaysiana 52(5)(2023):
1557-1565
http://doi.org/10.17576/jsm-2023-5205-17
Powder Injection Moulded Ti6Al4V-HA
Composite for Implants
(Pengacuan Suntikan Serbuk Komposit Ti6Al4V-HA untuk Implan)
NURUL NADIAH MAHMUD1,4,*,
ABU BAKAR SULONG2 & KEI AMEYAMA3
1Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu City, Shiga, 525-8577, Japan
2Department of
Mechanical and Manufacturing Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Mechanical Engineering, Ritsumeikan University,
1-1-1 Noji Higashi, Kusatsu City, Shiga, 525-8577, Japan
4Universiti Kuala Lumpur
Malaysia France Institute, 43650 Bandar Baru Bangi, Selangor Darul Ehsan,
Malaysia
Received: 4 November 2022/Accepted: 11 April 2023
Abstract
Powder injection moulding (PIM) is widely used to produce complex shapes of
Titanium and its alloys. Ti6Al4V-HA feedstocks at 63,
64 and 66 vol.% were produced by combining a Ti6Al4V-HA powder mixture (90:10
wt.%) with a binder system containing palm stearin (PS) and low-density
polyethylene (LDPE). Binder system consisted with 60 wt.% of PS and 40 wt.% of
LDPE. All powder loading materials were successfully injection moulded into the shape of a tension bar. Following that,
all powder loadings were successfully debound in
solvent and thermal methods. Based on SEM observation that 66 vol.% powder
loading demonstrated homogenized distribution of powder and binder. Hence, 66
vol.% powder loading was selected for further process sintering at 1300 ºC, and
its bending strength was evaluated. Sintered Ti6Al4V-HA with porous structure
has Young’s modulus of 11 GPa, within the Young modulus
of bone (10 to 30 GPa). The results of this study
indicate that sintered Ti6Al4V-HA has potential as an implant material.
Keywords: Composite;
hydroxyapatite; powder injection moulding; Ti6Al4V
Abstrak
Pengacuan suntikan serbuk (PIM) digunakan secara meluas untuk menghasilkan bentuk kompleks daripada Titanium dan aloinya. Bahan suapan Ti6Al4V-HA pada 63, 64 dan 66 vol.% dihasilkan dengan menggabungkan campuran serbuk Ti6Al4V-HA (90:10
wt.%) dengan sistem pengikat yang mengandungi stearin sawit (PS) dan polietilena berketumpatan rendah (LDPE). Sistem pengikat terdiri daripada 60 wt.% daripada PS dan 40 wt.% daripada LDPE. Semua pemuatan serbuk berjaya disuntik ke dalam bentuk bar regangan. Selepas itu, semua pemuatan serbuk berjaya dinyahikat dalam kaedah pelarut dan haba. Berdasarkan pemerhatian SEM, 66
vol.% pemuatan serbuk menunjukkan taburan serbuk dan pengikat yang homogen. Oleh itu, pemuatan serbuk 66 vol.% telah dipilih untuk proses selanjutnya pensinteran pada 1300 ºC dan kekuatan lenturnya dinilai. Jasad sinter mempunyai modulus Young yang diperoleh adalah 11 GPa, berada dalam modulus Young tulang (10 sehingga 30 GPa). Hasil kajian ini menunjukkan jasad sinter Ti6Al4V-HA mempunyai potensi untuk digunakan sebagai bahan implan.
Kata kunci: Hidrosiapatit; komposit; pengacuan suntikan serbuk; Ti6Al4V
REFERENCES
Abdoos,
H., Khorsand, H. & Yousefi, A.A. 2014. Torque rheometry and rheological
analysis of powder–Polymer mixture for aluminum powder injection molding. Iranian
Polymer Journal (English Edition) 23(10): 745-755.
https://doi.org/10.1007/s13726-014-0268-1
Amir Arifin, Abu Bakar Sulong, Norhamidi Muhamad, Junaidi
Syarif & Mohd Ikram Ramli. 2014. Material processing of hydroxyapatite and
titanium alloy (HA/Ti) composite as implant materials using powder metallurgy:
A review. Materials and Design 55: 165-175.
https://doi.org/10.1016/j.matdes.2013.09.045
Brentel, A.S., de Vasconcellos, L.M.R., de Vasconcellos,
L.G.O., Oliveira, M.V., Cairo, C.A.A., de Alencastro Graca, M.L. &
Carvalho, Y.R. 2006. Histomorphometric analysis of pure titanium implants with
porous surface versus rough surface. Journal of Applied Oral Science 14(3): 213-218.
Chen, L-J., Li, T., Li, Y-M., He, H. & Hu, Y-H. 2009.
Porous titanium implants fabricated by metal injection molding. Transactions of Nonferrous Metals Society of
China 19(5): 1174-1179.
Chin, K.L.J., Chuan, Y.L., Ramesh, S. & Sivakumar, S.
2015. The sinterability of hydroxyapatite bioceramics after undergoing pre-heat
treatment. Journal of Engineering Science and Technology (Special Issue
on SOMCHE 2014 & RSCE 2014 Conference. pp. 83-90.
Crosby, K., Shaw, L.L., Estournes, C., Chevallier, G.,
Fliflet, A.W. & Imam, M.A. 2014. Enhancement in Ti-6Al-4V sintering via
nanostructured powder and spark plasma sintering. Powder Metallurgy 57(2): 147-154. https://doi.org/10.1179/1743290113Y.0000000082
Dutta Majumdar, D., Chowdhury, A.R. & Ghosh, M. 2018.
Titanium and its alloys for bio-implant applications. IIM Metal News 21:
6-9. https://doi.org/10.1002/3527602119.ch16
Eliaz, N. 2019. Corrosion of metallic biomaterials: A review. Materials 12(3): 407. https://doi.org/10.3390/ma12030407
Esen, Z. & Bor, S. 2011. Characterization of Ti – 6Al –
4V alloy foams synthesized by space holder technique. Materials Science and
Engineering A 528: 3200-3209. https://doi.org/10.1016/j.msea.2011.01.008
Faezeh Dalili, Rouhollah Mehdinavaz Aghdam, Reza Soltani
& Mohsen Saremi. 2022. Corrosion, mechanical and bioactivity properties of
HA-CNT nanocomposite coating on anodized Ti6Al4V alloy. Journal of Materials
Science: Materials in Medicine 33: Article No. 34.
https://doi.org/10.1007/s10856-022-06655-6
Farhana Mohd Foudzi, Norhamidi Muhamad, Abu Bakar Sulong
& Hafizawati Zakaria. 2013. Yttria stabilized zirconia formed by micro
ceramic injection molding: Rheological properties and debinding effects on the
sintered part. Ceramics International 39(3): 2665-2674.
https://doi.org/10.1016/j.ceramint.2012.09.033
German, R..M. & Bose, A. 1997. Injection Molding of
Metals and Ceramics. Princeton, New Jersey: Metal Powder Industries
Federation.
Hausnerova, B., Kitano, T., Kuritka, I., Prindis, J. &
Marcanikova, L. 2011. The role of powder particle size distribution in the
processability of powder injection molding compounds. International Journal
of Polymer Analysis and Characterization 16(2): 141-151.
https://doi.org/10.1080/1023666X.2011.547047
Hung, I.M., Shih, W.J., Hon, M.H. & Wang, M.C. 2012. The
properties of sintered calcium phosphate with [Ca]/[P] = 1.50. International
Journal of Molecular Sciences 13: 13569-13586.
https://doi.org/10.3390/ijms131013569
Kohri, M., Cooper, E.P., Ferracane, J.L. & Waite, D.F.
1990. Comparative study of hydroxyapatite and titanium dental implants in dogs. Journal Oral Maxillofacial and Surgery 48: 1265-1273.
Krishna, E.S. & Suresh, G. 2022. Bioactive
titanium-hydroxyapatite composites by powder metallurgy route. Biointerface
Research in Applied Chemistry 12(4): 5375-5383.
Lin, D., Park, J.M., Kang, T.G., Chung, S.T., Kwon, Y.S.
& Park, S.J. 2018. Powder injection molding of Ti-6Al-4V alloy for
defect-free high performance titanium parts with low carbon/oxygen contents. Key
Engineering Materials 770: 189-194.
https://doi.org/10.4028/www.scientific.net/KEM.770.189
Lu, J.X., Flautre, B., Anselme, K., Hardouin, P., Gallur, A.,
Descamps, M. & Thierry, B. 1999. Role of interconnections in porous
bioceramics on bone recolonization in
vitro and in vivo. Journal of
Materials Science: Materials in Medicine 10: 111-120.
McGregor, D.B., Baan, R.A., Partensky, C., Rice, J.M. &
Wilbourn, J.D. 2000. Evaluation of the carcinogenic risks to humans associated
with surgical implants and other foreign bodies - A report of an IARC
monographs programme meeting. European Journal of Cancer 36: 307-313.
https://doi.org/10.1016/S0959-8049(99)00312-3
Meshalkin, V.P. & Belyakov, A.V. 2020. Methods used for
the compaction and molding of ceramic matrix composites reinforced with carbon
nanotubes. Processes 8: 1-37. https://doi.org/10.3390/PR8081004
Miranda, G., Araújo, A., Bartolomeu, F., Buciumeanu, M.,
Carvalho, O., Souza, J.C.M., Silva, F.S. & Henriques, B. 2016. Design of
Ti6Al4V-HA composites produced by hot pressing for biomedical applications. Materials
and Design 108: 488-493. https://doi.org/10.1016/j.matdes.2016.07.023
Mohd Yusuf Zakaria, Mohd Ikram Ramli, Abu Bakar Sulong,
Norhamidi Muhamad & Muhammad Hussain Ismail. 2021. Application of sodium
chloride as space holder for powder injection molding of alloy
titanium–hydroxyapatite composites. Journal of Materials Research and
Technology 12: 478-486. https://doi.org/10.1016/j.jmrt.2021.02.087
Najlaa Nazihah Mas’ood, Farhana Mohd Foudzi, Abu Bakar
Sulong, Norhamidi Muhamad & Intan Fadhlina Mohamed. 2018. Two component
materials in powder metallurgy: A review paper focused on the processing
technique applied in powder metallurgy. Jurnal Kejuruteraan S1 1(6):
23-31.
Niespodziana, K. 2019. Synthesis and properties of porous
Ti-20 Wt.% HA nanocomposites. Journal of Materials Engineering and
Performance 28(2): 1-11. https://doi.org/10.1007/s11665-019-03966-8
Niinomi, M. 2002. Recent metallic materials for biomedical
applications. Metallurgical and Materials Transactions A 33(3): 477-486.
Nurul Nadiah Mahmud, Sulong, A.B., Sharma, B. & Ameyama,
K. 2021a. Presintered titanium-hydroxyapatite composite fabricated via pim
route. Metals 11(2): 318. https://doi.org/10.3390/met11020318
Nurul Nadiah Mahmud, Farah ‘Atiqah Abdul Azam, Mohd Ikram
Ramli, Farhana Mohd Foudzi, Kei Ameyama & Abu Bakar Sulong. 2021b.
Rheological properties of irregular-shaped titanium-hydroxyapatite bimodal
powder composite moulded by powder injection moulding. Journal of Materials
Research and Technology 11: 2255-2264.
https://doi.org/10.1016/j.jmrt.2021.02.016
Okazaki, Y. & Gotoh, E. 2005. Comparison of metal release
from various metallic biomaterials in
vitro. Biomaterials 26(1): 11-21.
https://doi.org/10.1016/j.biomaterials.2004.02.005
Orlovskii, V.P., Komlev, V.S. & Barinov, S.M. 2002.
Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic Materials 38(10): 973-984. https://doi.org/10.1023/A:1020585800572
Otsuki, B., Takemoto, M., Fujibayashi, S., Neo, M., Kokubo,
T. & Nakamura, T. 2006. Pore throat size and connectivity determine bone
and tissue ingrowth into porous implants: Three-dimensional micro-CT based
structural analyses of porous bioactive titanium implants. Biomaterials 27: 5892-5900. https://doi.org/10.1016/j.biomaterials.2006.08.013
Supati, R., Loh, N.H., Khor, K.A. & Tor, S.B. 2000.
Mixing and characterization of feedstock for powder injection molding. Materials
Letters 46(2-3): 109-114. https://doi.org/10.1016/S0167-577X(00)00151-8
Tecu, C., Antoniac, A., Goller, G., Gok, M.G., Manole, M.,
Mohan, A., Moldovan, H. & Earar, K. 2018. The sintering behaviour and
mechanical properties of hydroxyapatite - Based composites for bone tissue
regeneration. Revista de Chimie 69(5): 1272-1275. https://doi.org/10.37358/rc.18.5.6306
Thavanayagam, G., Pickering, K.L., Swan, J.E. & Cao, P.
2015. Analysis of rheological behaviour of titanium feedstocks formulated with
a water-soluble binder system for powder injection moulding. Powder
Technology 269: 227-232. https://doi.org/10.1016/j.powtec.2014.09.020
Thomas-vielma, P., Cervera, A., Levenfeld, B. & Varez, A.
2008. Production of alumina parts by powder injection molding with a binder
system based on high density polyethylene. Journal of European Ceramic
Society 28: 763-771. https://doi.org/10.1016/j.jeurceramsoc.2007.08.004
Xu, W., Lu, X., Muhammad Dilawer Hayat, Tian, J., Huang, C.,
Chen, M., Qu, X. & Wen, C. 2019. Fabrication and properties of newly
developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue
engineering. Journal of Materials Research and Technology 8(5):
3696-3704. https://doi.org/10.1016/j.jmrt.2019.06.021
Zhang, B.F., Otterstein, E. & Burkel, E. 2010. Spark
plasma sintering, microstructures, and mechanical properties of macroporous
titanium foams. Advanced Engineering Materials 9: 863-872.
https://doi.org/10.1002/adem.201000106.
*Corresponding author; email: nn90.kawai@gmail.com
|