Sains Malaysiana 52(5)(2023): 1581-1593

http://doi.org/10.17576/jsm-2023-5205-19

 

Identifying Outlier Subjects in Bioavailability Trials Using Generalized Studentized Residuals

(Pengenalpastian Subjek Outlier dalam Ujian Ketersediaan Biologi Menggunakan Residu Terstuden)

 

F.P. LIM1,*, L.L. WONG2, H.K. YAP3 & K.S. YOW4

 

1,2,4Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Department of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 19 August 2022/Accepted: 10 May 2023

 

Abstract

This paper discusses several outlier detection methods for bioavailability trials, particularly based on residuals. By considering a simplified model of standard crossover model, which is commonly used in bioavailability trials, we propose an outlier detection procedure based on the generalized studentized residuals (SR3) and compare its ability of detecting the possible outlying subjects with two existing procedures, which are carried out based on the classical studentized residual (SR1) and studentized residual using median absolute deviation (SR2). The performances of these procedures in detecting outlying subject are presented via an extensive simulation study. The results show that the proposed procedure SR3 performs more powerful than that using SR1, and as well as the procedure using SR2 for outlier detection. As an illustration, these procedures are implemented on a real dataset from bioavailability study, namely, the area under the curve (AUC) dataset for two erythromycin formulations.

 

Keywords: Bioavailability; crossover design; generalized studentized residuals; outlier; residual

 

Abstrak

Kertas ini membincangkan beberapa kaedah pengesanan titik terpencil untuk ujian bioketersediaan, terutamanya berdasarkan residu. Dengan mempertimbangkan satu model silang piawai yang biasa digunakan dalam ujian bioketersediaan, kami mencadangkan satu prosedur pengesanan titik terpencil berdasarkan residu terstuden teritlak (SR3) dan membandingkan keupayaannya untuk mengesan kemungkinan subjek terpencil dengan dua prosedur sedia ada, iaitu dijalankan berdasarkan residu terstuden klasik (SR1) dan residu terstuden yang menggunakan sisihan mutlak median (SR2). Prestasi prosedur berkenaan dalam mengesan subjek terpencil dibentangkan melalui kajian simulasi yang ekstensif. Keputusan menunjukkan bahawa prosedur yang dicadangkan SR3 berprestasi lebih baik daripada prosedur yang menggunakan SR1, dan juga prosedur menggunakan SR2 bagi pengesanan titik terpencil. Sebagai ilustrasi, prosedur tersebut dilaksanakan pada satu set data sebenar daripada kajian bioketersediaan, iaitu, luas di bawah lengkungan (AUC) set data untuk dua formulasi eritromisin.

 

Kata kunci: Bioketersediaan; pencilan; reka bentuk silang; residu terstuden teritlak; residu

 

REFERENCES

Baba, A.M., Midi, M., Adam, M.B. & Rahman, N.H.A. 2021. Detection of influential observations in spatial regression model based on outliers and bad leverage classification. Symmetry 13(11): 2030.

Chow, S.C. 2014. Bioavailability and bioequivalence in drug development. Wiley Interdisciplinary Reviews: Computational Statistics 6(4): 304-312. doi:10.1002/wics.1310

Chow, S.C. & Liu, J.P. 2009. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. London: Chapman and Hall.

Chow, S.C. & Tse, S.K. 1990. Outlier detection in bioavailability/bioequivalence studies. Statistics in Medicine 9(5): 549-558.

Clayton, D. & Leslie, A. 1981. The bioavailability of erythromycin stearate versus enteric-coated erythromycin base when taken immediately before and after food. Journal of International Medical Research 9(6): 470-477.

El-Kelany, G.A. & Ahmed, S.M. 2020. Detecting outliers in bioequivalence studies for crossover design. Asian Journal of Applied Science and Technology (AJAST). 4(1): 30-49.

Ellenberg, J.H. 1976. Testing for a single outlier from a general linear regression. Biometrics 32(3): 637-645.

Enachescu, D. & Enachescu, C. 2009. A new approach for outlying records in bioequivalence trials. In Proceedings of the 13th International Conference on Applied Stochastic Models and Data Analysis, Vilnius, Lithuania. pp. 250-257.

Hadi, A.S. 1992. A new measure of overall potential influence in linear regression. Computational Statistics & Data Analysis 14(1): 1-27.

Hoaglin, D.C. & Welsch, R.E. 1978. The hat matrix in regression and ANOVA. The American Statistician 32(1): 17-22.

Imon, A.H.M.R. 2005. Identifying multiple influential observations in linear regression. Journal of Applied Statistics 32(9): 929-946.

Imon, A.H.M.R. 1996. Subsample methods in regression residual prediction and diagnostics. PhD thesis, School of Mathematics and Statistics, University of Birmingham, UK (Unpublished).

Jones, B. & Kenward, M.G. 1989. Design and analysis of cross-over trials. London: Chapman and Hall.

Karasoy, D. & Daghan, G. 2012. Examination of outliers in bioequivalence studies. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology 22(4): 307-312.

Ki, F.Y., Liu, J.P., Wang, W. & Chow, S.C. 1995. The impact of outlying subjects on deciding of bioequivalence. Journal of Biopharmaceutical Statistics 5(1): 71-94.

Lim, F.P. 2016. Statistical appraisal in solving some medical problems. Doctoral Dissertation, University of Malaya, Kuala Lumpur, Malaysia (Unpublished).

Lim, F.P. 2010.  Goodness-of-fit test for standard logistics distribution with outliers. Doctoral Dissertation, Universiti Putra Malaysia (Unpublished).

Lim, F.P., Mohamed, I., Ibrahim, A.I.N., Goh, S.L., Mohamed, N.A. & Rahman, A. 2019. Outlier detection in 2 × 2 crossover design using Bayesian framework. Sains Malaysiana 48(4): 893-899.

Lim, F.P., Mohamed, I., Daud, N. & Goh, S.L. 2016. Comparison of outlier detection methods in standard 2×2 crossover design. Sains Malaysiana 45(3): 499-506.

Liu, J.P. & Weng, C.S. 1991. Detection of outlying data in bioavailability/bioequivalence studies. Statistics in Medicine 10(9): 1375-1389.

Lund, R.E. 1975. Tables for an approximate test for outliers in linear models. Technometrics 17(4): 473-476.

Luzar-Stiffler, V. & Stiffler, C. 2005. Higher-order crossover design outlier detection. In Proceedings of the 27th International Conference on Information Technology Interfaces. Zagreb: University of Zagreb. pp. 650-655.

Ramsay, T. & Elkum, N. 2005. A comparison of four different methods for outlier detection in bioequivalence studies. Journal of Biopharmaceutical Statistics 15(1): 43-52.

Rodda, B.E. 1986. Bioequivalence of Solid Oral Dosage Forms, Presentation to U. S. Food and Drug Administration Hearing on Bioequivalence of Solid Dosage Forms. 29 September to 1 October. Pharmaceutical Manufacturers Association.

Maarof, F., Peng, L.F. & Ibrahim, N.A. 2010. Bootstrapping the confidence intervals of  for samples from contaminated standard logistic distribution. Pertanika Journal of Science & Technology 18(1): 209-221.

Metzler, C.M. & Huang, D.C. 1983. Statistical methods for bioavailability and bioequivalence. Clinical Research Practices and Drug Regulatory Affairs 1: 109-132.

Sandulovici, R., Mircioiu, I., Aboul-Enein, H.Y., Manolache, M., Mircioiu, C., Voicu, V. & Anuta, V. 2020. Sources of outlier data in the bioanalytical and clinical part of a piroxicam bioequivalence study. International Journal of Clinical Pharmacology and Therapeutics 58(11): 652-663.

Silalahi, D.D., Midi, H., Arasan, J., Mustafa, M.S. & Caliman, J.P. 2020. Kernel partial diagnostic robust potential to handle high-dimensional and irregular data space on near infrared spectral data. Heliyon 6(1): e03176.

Singh, R., Namdev, K.K. & Chilkoti, D. 2014. An assessment on handling of outlier subjects in bioequivalence study - A review. Journal of Pharmaceutical and Bioanalytical Science 3(1): 14-20.

Weiner, D. 1989. Bioavailability. Notes on the training course for new clinical statisticians sponsored by the Biostatistics Subsections of Pharmaceutical Manufacture Association, March, 1989, Washington, DC.

Wang, W. & Chow, S.C. 2003. Examining outlying subjects and outlying records in bioequivalence trials. Journal of Biopharmaceutical Statistics 13(1): 43-56.

Wilcox, R.R. 2011. Introduction to Robust Estimation and Hypothesis Testing. Massachusetts: Academic Press.

Zhao, J.L., Liu, C., Niu, L. & Leng, C.L. 2019. Multiple influential point detection in high dimensional regression spaces. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81(2): 385-408.

 

*Corresponding author; email: fongpeng@upm.edu.my

 

 

 

 

 

previous