Sains Malaysiana 52(5)(2023):
1581-1593
http://doi.org/10.17576/jsm-2023-5205-19
Identifying
Outlier Subjects in Bioavailability Trials Using Generalized Studentized
Residuals
(Pengenalpastian Subjek Outlier
dalam Ujian Ketersediaan Biologi Menggunakan Residu Terstuden)
F.P. LIM1,*, L.L. WONG2, H.K. YAP3 & K.S. YOW4
1,2,4Department of Mathematics and Statistics,
Faculty of Science, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department
of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Cheras, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
Received:
19 August 2022/Accepted: 10 May 2023
Abstract
This paper discusses several outlier detection methods
for bioavailability trials, particularly based on residuals. By considering a
simplified model of standard crossover model, which is commonly used in
bioavailability trials, we propose an outlier detection procedure based on the
generalized studentized residuals (SR3) and compare its ability of detecting
the possible outlying subjects with two existing procedures, which are carried
out based on the classical studentized residual (SR1) and studentized residual
using median absolute deviation (SR2). The performances of these procedures in
detecting outlying subject are presented via an extensive simulation study. The
results show that the proposed procedure SR3 performs more powerful than that
using SR1, and as well as the procedure using SR2 for outlier detection. As an
illustration, these procedures are implemented on a real dataset from
bioavailability study, namely, the area under the curve (AUC) dataset for two
erythromycin formulations.
Keywords: Bioavailability; crossover design; generalized studentized residuals;
outlier; residual
Abstrak
Kertas ini membincangkan beberapa kaedah pengesanan titik terpencil untuk
ujian bioketersediaan, terutamanya berdasarkan residu. Dengan mempertimbangkan
satu model silang piawai yang biasa digunakan dalam ujian bioketersediaan, kami
mencadangkan satu prosedur pengesanan titik terpencil berdasarkan residu terstuden teritlak (SR3) dan
membandingkan keupayaannya untuk mengesan kemungkinan subjek terpencil dengan
dua prosedur sedia ada, iaitu dijalankan berdasarkan residu terstuden klasik (SR1)
dan residu terstuden yang menggunakan sisihan mutlak median (SR2). Prestasi
prosedur berkenaan dalam mengesan subjek terpencil dibentangkan melalui kajian
simulasi yang ekstensif. Keputusan menunjukkan bahawa prosedur yang dicadangkan
SR3 berprestasi lebih baik daripada prosedur yang menggunakan SR1, dan juga
prosedur menggunakan SR2 bagi pengesanan titik terpencil. Sebagai ilustrasi,
prosedur tersebut dilaksanakan pada satu set data sebenar daripada kajian
bioketersediaan, iaitu, luas di bawah lengkungan (AUC) set data untuk dua
formulasi eritromisin.
Kata kunci: Bioketersediaan;
pencilan; reka bentuk silang; residu terstuden teritlak; residu
REFERENCES
Baba, A.M., Midi, M.,
Adam, M.B. & Rahman, N.H.A. 2021. Detection of influential observations in
spatial regression model based on outliers and bad leverage classification. Symmetry 13(11): 2030.
Chow, S.C. 2014. Bioavailability
and bioequivalence in drug development. Wiley Interdisciplinary Reviews:
Computational Statistics 6(4): 304-312. doi:10.1002/wics.1310
Chow, S.C. &
Liu, J.P. 2009. Design and Analysis of Bioavailability and Bioequivalence
Studies. 3rd ed. London: Chapman and Hall.
Chow,
S.C. & Tse, S.K. 1990. Outlier detection in
bioavailability/bioequivalence studies. Statistics in Medicine 9(5):
549-558.
Clayton, D. & Leslie,
A. 1981. The bioavailability of erythromycin stearate versus enteric-coated
erythromycin base when taken immediately before and after food. Journal of
International Medical Research 9(6):
470-477.
El-Kelany, G.A. & Ahmed, S.M. 2020. Detecting outliers in
bioequivalence studies for crossover design. Asian Journal of Applied Science and Technology
(AJAST). 4(1): 30-49.
Ellenberg, J.H. 1976. Testing for a
single outlier from a general linear regression. Biometrics 32(3):
637-645.
Enachescu, D. & Enachescu, C. 2009. A new approach for outlying records in
bioequivalence trials. In Proceedings of the 13th International Conference
on Applied Stochastic Models and Data Analysis, Vilnius, Lithuania. pp.
250-257.
Hadi, A.S. 1992. A new measure
of overall potential influence in linear regression. Computational
Statistics & Data Analysis 14(1):
1-27.
Hoaglin, D.C. & Welsch, R.E. 1978. The hat matrix in regression and ANOVA. The
American Statistician 32(1):
17-22.
Imon,
A.H.M.R. 2005. Identifying
multiple influential observations in linear regression. Journal of Applied
Statistics 32(9): 929-946.
Imon, A.H.M.R. 1996. Subsample
methods in regression residual prediction and diagnostics. PhD thesis, School
of Mathematics and Statistics, University of Birmingham, UK (Unpublished).
Jones, B. & Kenward,
M.G. 1989. Design and analysis of cross-over trials. London: Chapman and Hall.
Karasoy, D. & Daghan, G. 2012. Examination of outliers in bioequivalence
studies. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology 22(4): 307-312.
Ki, F.Y., Liu, J.P., Wang,
W. & Chow, S.C. 1995. The impact of outlying subjects on deciding of
bioequivalence. Journal of Biopharmaceutical Statistics 5(1): 71-94.
Lim, F.P. 2016. Statistical appraisal in
solving some medical problems. Doctoral Dissertation, University of Malaya,
Kuala Lumpur, Malaysia (Unpublished).
Lim, F.P. 2010.
Goodness-of-fit
test for standard logistics distribution with outliers. Doctoral Dissertation, Universiti Putra Malaysia (Unpublished).
Lim, F.P., Mohamed, I.,
Ibrahim, A.I.N., Goh, S.L., Mohamed, N.A. & Rahman, A. 2019. Outlier
detection in 2 × 2 crossover design using Bayesian framework. Sains Malaysiana 48(4): 893-899.
Lim, F.P., Mohamed, I., Daud, N. &
Goh, S.L. 2016. Comparison of outlier detection methods in standard 2×2
crossover design. Sains Malaysiana 45(3): 499-506.
Liu, J.P. & Weng, C.S.
1991. Detection of outlying data in bioavailability/bioequivalence studies. Statistics
in Medicine 10(9):
1375-1389.
Lund, R.E. 1975. Tables for an approximate test for
outliers in linear models. Technometrics 17(4): 473-476.
Luzar-Stiffler, V. & Stiffler, C. 2005. Higher-order
crossover design outlier detection. In Proceedings
of the 27th International Conference on Information Technology Interfaces. Zagreb:
University of Zagreb. pp. 650-655.
Ramsay, T. & Elkum, N. 2005. A comparison of four different methods for
outlier detection in bioequivalence studies. Journal of Biopharmaceutical
Statistics 15(1): 43-52.
Rodda, B.E. 1986. Bioequivalence of Solid Oral Dosage Forms,
Presentation to U. S. Food and Drug Administration Hearing on Bioequivalence of
Solid Dosage Forms. 29 September to 1 October. Pharmaceutical Manufacturers
Association.
Maarof, F., Peng, L.F.
& Ibrahim, N.A. 2010. Bootstrapping the confidence intervals of
for samples from contaminated standard
logistic distribution. Pertanika Journal of
Science & Technology 18(1):
209-221.
Metzler, C.M. & Huang,
D.C. 1983. Statistical methods for bioavailability and bioequivalence. Clinical
Research Practices and Drug Regulatory Affairs 1: 109-132.
Sandulovici, R., Mircioiu, I., Aboul-Enein, H.Y., Manolache, M., Mircioiu, C., Voicu, V. & Anuta, V. 2020.
Sources of outlier data in the bioanalytical and clinical part of a piroxicam
bioequivalence study. International Journal of Clinical Pharmacology and
Therapeutics 58(11):
652-663.
Silalahi, D.D., Midi, H., Arasan, J., Mustafa, M.S. & Caliman,
J.P. 2020. Kernel partial diagnostic robust potential to handle
high-dimensional and irregular data space on near infrared spectral data. Heliyon 6(1):
e03176.
Singh, R., Namdev, K.K. & Chilkoti, D.
2014. An assessment on handling of outlier subjects in bioequivalence study - A
review. Journal of Pharmaceutical and Bioanalytical Science 3(1): 14-20.
Weiner, D. 1989. Bioavailability. Notes on the training
course for new clinical statisticians sponsored by the Biostatistics
Subsections of Pharmaceutical Manufacture Association, March, 1989, Washington,
DC.
Wang, W. & Chow, S.C.
2003. Examining outlying subjects and outlying records in bioequivalence
trials. Journal of Biopharmaceutical Statistics 13(1): 43-56.
Wilcox, R.R. 2011. Introduction
to Robust Estimation and Hypothesis Testing. Massachusetts: Academic Press.
Zhao, J.L., Liu, C., Niu, L. & Leng, C.L. 2019.
Multiple influential point detection in high dimensional regression spaces. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 81(2): 385-408.
*Corresponding author; email: fongpeng@upm.edu.my
|