Sains Malaysiana 38(4)(2009): 559–565

 


MHD
Flow and Heat Transfer Adjacent to a Permeable Shrinking Sheet Embedded in a Porous Medium

(Aliran MHD dan Perpindahan Haba Berhampiran Satu Lapisan yang Mengecut dalam Suatu Medium Telap)

 

Noor Fadiya Mohd Noor

Faculty of Applied Science and Mathematics

Universiti Industri Selangor, 45600 Bestari Jaya, Selangor,Malaysia

 

Ishak Hashim*

Centre for Modeling & Data Analysis

School of Mathematical Sciences, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor D.E., Malaysia

Diserahkan: 28 April 2008 / Diterima: 25 November 2008

 

ABSTRACT

 

The magnetohydrodynamic (MHD) boundary-layer flow and heat transfer due to a shrinking sheet in a porous medium is considered for the first time. The Navier-Stokes equations and the heat equation are reduced to two nonlinear ordinary differential equations via similarity transformations. The transformed equations are solved by a semi-analytic method. The effects of the suction and porosity parameters, the Prandtl and Hartmann numbers on the skin friction, heat transfer rate, velocity and temperature profiles are discussed and presented, respectively.

 

Keyword: Boundary-layer; heat transfer; MHD; porous medium; shrinking sheet

 

ABSTRAK

 

Aliran lapisan sempadan magnetohidrodinamik (MHD) dan perpindahan haba dari lapisan yang mengecut dalam satu medium telap dipertimbangkan untuk pertama kali. Persamaan Navier-Stokes dan persamaan haba dipermudahkan menjadi dua persamaan pembezaan biasa tak linear melalui penjelmaan keserupaan. Persamaan yang terjelmakan itu diselesaikan dengan kaedah separa-analisis. Kesan parameter sedutan dan keliangan, nombor Prandtl dan Hartmann terhadap pekali geseran kulit, pekali pemindahan haba, profil halaju dan suhu dibincang dan ditunjukkan.

 

ata kunci: Lapisan sempadan; lapisan mengecut; MHD; medium telap; perpindahan haba  

 

 

RUJUKAN

 

Adomian, G. 1994. Solving Frontier Problems of Physics: The Decomposition Method. Dordrecht: Kluwer Academic.

Ariel, P.D., Hayat, T. & Asghar, S. 2006. Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int. J. Nonlin. Sci. Numer. Simul. 7: 399-406.

Awang Kechil, S. & Hashim, I. 2007. Series solution for unsteady boundary-layer flows due to impulsively stretching plate. Chin. Phys. Lett. 24(1): 139-142.

Awang Kechil, S., Hashim, I. & Jiet, S.S. 2007. Approximate analytical solutions for a class of laminar boundary-layer equations. Chin. Phys. Lett. 24(7): 1981-1984.

Awang Kechil, S. & Hashim, I. 2008. Non-perturbative solution of free-convection boundary-layer equation by Adomian decomposition method. Phys. Lett. A 363: 110-114.

Awang Kechil, S. & Hashim, I. 2008. Series solution of flow over nonlinearly stretching sheet with chemical reaction and magnetic field. Phys. Lett. A 372: 2258-2263.

Awang Kechil, S. & Hashim, I. 2008. Series solutions of boundary-layer flows in porous media with lateral mass flux. Heat Mass Transfer 44(10): 1179-1186.

Ayub, M., Zaman, H., Sajid, M. & Hayat, T. 2008. Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface. Commun. Nonlin. Sci. Numer. Simul. 13: 1822-1835.

Boyd, J.P. 1997. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. Phys. 11: 299-303.

Cortell, R. 2005. Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Res. 37: 231-245.

Cortell, R. 2007. MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem. Eng. Process. 46: 721-728.

Crane, L.J. 1970. Flow past a stretching plate. ZAMP 21: 645- 647.

Gupta, P.S. & Gupta, A.S. 1977. Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng. 55: 744-746.

Hashim, I. 2006. Comments on “A new algorithm for solving classical Blasius equation” by L. Wang. Appl. Math. Comput. 176: 700-703.

Hayat, T. & Javed, T. 2007. On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet. Phys. Lett. A 370: 243-250.

Hayat, T., Abbas, Z. & Javed, T. 2008. Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys. Lett. A 372: 637-647.

Hayat, T., Abbas, Z., Javed, T. & Sajid, M. 2007. Three- dimensional rotating flow induced by a shrinking sheet for suction. Chaos Solitons Fractals 39: 1615-1626.

Ishak, A., Nazar, R. & Pop, I. 2008. Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transfer 44(8): 921-927.

Miklavcic, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quart. Appl. Math. 64:283-290.

Sajid, M., Javed, T. & Hayat, T. 2008. MHD rotating flow of a viscous fluid over a shrinking surface. Nonlin. Dyn. 51: 259-265.

Sajid, M. & Hayat, T. 2007. The application of homotopy analysis method for MHD viscous flow due to a shrinking sheet. Chaos Solitons Fractals 39: 1317-1323.

Wang, C.Y. 1984. The three dimensional flow due to a stretching flat surface. Phys. Fluids 27: 1915-1917.

Wang, C.Y. 1990. Liquid film on an unsteady stretching sheet. Quart. Appl. Math. 48: 601-610.

Wang, C.Y. 2008. Stagnation flow towards a shrinking sheet. Int. J. Non-linear Mech. 43: 377-382.

Xu, H., Liao, S.J. & Pop, I. 2007. Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. Eur. J. Mech. B/Fluids 26: 15-27.

Yahaya, F., Hashim, I., Ismail, E.S. & Zulkifle, A.K. 2007. Direct solutions of nth-order initial value problems in decomposition series. Int. J. Nonlin. Sci. Numer. Simul. 8: 385-397.

Zhu, Y., Chang, Q. & Wu, S. 2005. A new algorithm for calculating Adomian polynomials. Appl. Math. Comput. 169: 402-416.

*Pengarang untuk surat-menyurat; email: ishak_h@ukm.my

 

sebelumnya