| Sains
          Malaysiana 38(5)(2009): 723–728
  
          
                
           Solving Directly Two Point
            Boundary Value Problems Using
            
           Direct Multistep Method
            
           (Penyelesaian
            Langsung Masalah Nilai Sempadan Dua Titik
            
           Menggunakan
            Kaedah Multilangkah Secara Langsung)
                
           
             
           Mahanum Diana Jafri1, Mohamed Suleiman2,
            
           Zanariah Abdul Majid1*
  & Zarina Bibi Ibrahim2
  
 
             
           1Institute for Mathematical Research,
                
           Universiti Putra Malaysia, 43400
            Serdang, Selangor D.E. Malaysia
                
           
             
           2Mathematics Department, Faculty Science, Universiti Putra
            Malaysia
                
           43400 Serdang, Selangor D.E.
            Malaysia
                
           
             
           Diserahkan: 11 Ogos 2008 /
            Diterima: 18 November 2008
                
           
             
           
             
           ABSTRACT
                
           
             
           In this
            paper we consider solving directly two point boundary value problems (BVPs) for second-order ordinary differential equations (ODEs). We are concerned with solving this problem using multistep
              method in term of backward difference formula and approximating the solutions
              with the shooting method. Most of the existence researches involved BVPs will reduce the problem to a system of first order ODEs. This approach is very well established but it obviously will
                enlarge the system of first order equations. However, the direct multistep
                method in this paper will be utilised to obtain a series solution of the
                initial value problems directly without reducing to first order equations. The
                numerical results show that the proposed method with shooting method can
                produce good results.
  
 
             
           Keywords:
            Backward difference formula; boundary value problem; shooting method
                  
           
             
           ABSTRAK
                
           
             
           Dalam
            makalah ini, penyelesaian masalah nilai sempadan dua titik untuk sistem
            persamaan peringkat kedua telah diambilkira. Masalah ini
              diselesaikan menggunakan kaedah multilangkah secara langsung dalam sebutan
              rumus beza ke belakang dan penghampiran kepada penyelesaian menggunakan kaedah
              tembakan. Penyelidikan yang sedia ada yang melibatkan masalah nilai
            sempadan akan diturunkan ke sistem persamaan peringkat
            pertama. Pendekatan ini sangat dikenali tetapi ia akan
            meningkatkan saiz sistem persamaan peringkat pertama. Manakala, kaedah
            multilangkah secara langsung di dalam makalah ini akan menghasilkan siri penyelesaian untuk masalah nilai awal tanpa diturunkan ke
            sistem persamaan peringkat pertama. Hasil berangka
              menunjukkan kaedah yang dicadangkan bersama kaedah tembakan dapat menghasilkan
              keputusan yang baik.
  
 
             
           Kata kunci:
            Kaedah tembakan; masalah nilai sempadan; rumus beza ke belakang
                  
           
             
           RUJUKAN
                
           
             
           Attili,
            B.S. & Syam, M.I. 2008. Efficient
              shooting method for solving two point boundary value problem. Chaos, Solitons and Fractals 35: 895-903.
  
 Auzinger,
            W., Kneisl, G., Koch, O. & WeinmŸller, E. 2003. A collocation code for singular boundary
              value problems in ordinary differential equations. Numerical
                Algorithms 33: 27-39.
  
 Faires, D.
  & Burden, R.L. 1998. Numerical
    Analysis. USA: International Thomson Publishing Inc.
  
 Ha, S.N. 2001. A
            nonlinear shooting method for two point boundary value problems. Comput. Math Appl. 42: 1411-20.
  
           Krogh, F.T. 1973. Algorithms
            for changing the step size. SIAM J. Numer. Anal. 10(5): 949- 965.
  
           Majid, Z.A.
  & Suleiman, M.B. 2006. Direct
    integration implicit variable steps method for solving higher order systems of
    ordinary differential equations directly. Jurnal Sains Malaysiana 35(2):
    63-68.
  
 Majid, Z.A.
  & Suleiman, M. 2007. Two point block direct
    integration implicit variable steps method for solving higher order systems of
    ordinary differential equations. International Conference
      of Applied and Engineering Mathematics. Proceeding of the World
        Congress on Engineering, WCE 2007, II:
    812-815.
  
 Malathi, V. 1999. Solving boundary value problems for ordinary differential
            equations using direct integration and shooting techniques, Ph.D. Thesis,
            Universiti Putra Malaysia, Malaysia.
  
           Omar,
            Z. 1999. Developing parallel block methods for solving higher order odes
            directly, Ph.D. Thesis, Universiti Putra Malaysia, Malaysia.
                
           Suleiman,
            M.B. 1989. Solving higher order odes directly by the direct integration method, Applied Mathematics and Computation 33: 197-219.
  
 
             
           *Pengarang untuk surat-menyurat;  email: zanariah@science.upm.edu.my
            
           
             
            
           
             
             |