Sains Malaysiana 39(1)(2010): 115–118
Upgrading Logic Programming in Hopfield Network
(Mempertingkatkan Logik Program dalam Rangkaian Hopfield)
Saratha Sathasivam
School of Mathematical Sciences, Universiti Sains Malaysia
11800 USM, Penang, Malaysia
Received: 28 April 2009 / Accepted: 17 June 2009
ABSTRACT
The convergence property for doing logic programming in Hopfield network can be accelerated by using new relaxation method. This paper shows that the performance of the Hopfield network can be improved by using a relaxation rate to control the energy relaxation process. The capacity and performance of these networks is tested by using computer simulations. It was proven by computer simulations that the new approach provides good solutions.
Keywords: Energy relaxation; Little-Hopfield neural networks; program clauses
ABSTRAK
Kriteria penumpuan untuk melakukan program logik dalam rangkaian Hopfield dapat dipertingkatkan dengan menggunakan kaedah berehat yang baru. Dalam artikel ini ditunjukkan bahawa operasi rangkaian Hopfield dapat dipertingkatkan dengan menggunakan kadar rehat bagi mengawal proses relaksi tenaga. Saiz dan kadar operasi rangkaian ini di uji dengan menggunakan simulasi komputer. Dibuktikan melalui simulasi komputer kaedah baru memberikan penyelesaian yang baik.
Kata kunci: Klausa program; rangkaian Neural Little-Hopfield; santaian tenaga
REFERENCES
Altenberg, Lee. 1997. Handbook of Evolutionary Computation: Oxford University Press.
Haykin, S. 1999. Neural Network: A Comprehensive Foundation. New York: Macmillan.
Hopfield, J.J. 1985. Neural computation of decisions in optimization problems. Biol. Cybern. 52: 141-152.
Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci (USA) 79: 2554-2558.
Little, W.A. 1974. The Existence of persistent states in the brain. Math. Biosci 19: 101-120.
Saratha Sathasivam & Wan Abdullah, W.A.T. 2008a. Flatness of the energy landscapes of horn clauses. MATEMATIKA 23(2): 147-156.
Saratha Sathasivam & Wan Abdullah, W.A.T. 2008b. Logic Learning in the hopfield Networks. Modern Applied Science 2(3): 57-62.
Saratha Sathasivam. 2006. Logic Mining in Neural Networks. PhD Thesis: University of Malaya, Malaysia.
Wan Abdullah, W.A.T. 1992. Logic programming on a neural network. Int. J. Intelligent Sys. 7: 513-519.
Zeng, S & Martinez, T. 1999. Improving the performance of the Hopfield network by using a relaxation rate, Proc. Int. Conference on Neural Networks and Genetic Algorithms: 73-77.
*Corresponding author; email: saratha@cs.usm.my