Sains Malaysiana 40(5)(2011): 503–509
Kesan Masa Pengeraman Nanozarah Zink Oksida yang
Dihasilkan Menggunakan Afrons Gas Koloid
(Incubation Effect
on Zinc Oxide Nanoparticles Produced Using Colloidal Gas Aphrons)
Saifful Kamaluddin Muzakir*
Fakulti Sains & Teknologi Industri, Universiti Malaysia
Pahang, Lebuhraya Tun Razak
26300 Gambang, Kuantan, Pahang, Malaysia
Shahidan Radiman
Pusat Pengajian Fizik Gunaan, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Diserahkan: 12 Mac 2010 / Diterima: 7 Julai 2010
ABSTRAK
Nanozarah zink oksida
telah disintesis menggunakan afrons gas koloid sebagai acuan. Zink sulfat (ZnSO4.7H2O)
dan gas ammonia digunakan sebagi bahan tindak balas. Masa pengeraman yang
dikaji adalah 2 jam dan 18 jam. Daripada analisis mikroskop elektron imbasan,
morfologi nanohelaian dapat diperhatikan dengan ketebalan helaian 125 nm hingga
200 nm. Daripada analisis spektroskopi ultra lembayung-boleh nampak, saiz
purata yang dianggarkan bagi sampel nanozarah zink oksida yang disintesis
dengan masa pengeraman 2 jam adalah 2.03 nm dan 2.1 nm untuk sampel yang
dieramkan selama 18 jam.
Kata kunci: Afrons gas
koloid; kesan masa pengeraman; nano ZnO; semikonduktor
ABSTRACT
Zinc oxide nanoparticles
has been synthesized using colloidal gas aphrons as template. Zinc sulfate
(ZnSO4.7H2O) and ammonia gas used as reactants. The incubation
periods that have been studied are 2 h and 18 h. From the scanning electron
microscope analysis, nanosheet morphology can be observed with thickness of 125
nm to 200 nm. From the UV-Vis spectroscopy analysis, the estimated average size
for zinc oxide nanoparticles with 2 h incubation time is 2:03 nm and 2.1 nm for
18 h of incubation time.
Keywords: Colloidal
gas aphrons; incubation effect; nano ZnO; semiconductor
RUJUKAN
Bagnall,
D.M., Chen, Y.F. & Zhu, Z. 1998. High temperature excitonic stimulated
emission from ZnO epitaxial layers. Applied Physics Letters 73:
1038-3917.
Brus,
L.E. 1984. Electron-electron and electron-hole interactions in small
semiconductor crystallites: the size dependence of the lowest excited
electronic state. Journal of Chemical Physics 80: 4403-4409.
Champalkar,
P.G., Valsaraj, K.T. & Roy, D. 1993. Xanthan precipitation from solutions
and fermentation broths. Separation Science and Technology 28:
1303-1313.
Dai,
Y. & Deng, T. 2003. Stabilization and characterization of colloidal gas
aphron dispersions. Journal of Colloid and Interface Science 261:
360-365.
Hensirisak,
P. 1997. Scale-up the use of microbubble dispersion to increase oxygen transfer
in aerobic fermentation of baker’s yeast. M.Sc. Thesis. Virginia Polytechnic
Institute and State University.
Jarudilokkul,
S. & Rungphetcharat, K. 2004. Protein separation by colloidal gas aphrons
using nonionic surfactant. Separation and Purification Technology 35:
23-29.
Jauregi,
P. & Varley, J. 1999. Colloidal gas aphrons: potential applications in
biotechnology. Tibtech 17:389- 395.
Kommalapati,
R.R. & Valsaraj, K.T. 1998. Soil flushing using colloidal gas aphron
suspensions generated from a plant-based surfactant. Journal of Hazardous
Materials 60: 73-87.
Li,
C. & Xiyu, S. 2002. Quantum confinement effect of ZnO nano-particles. Chemistry
Magazine 4: 45-50.
Phelan,
R., Weaire, D., Peters, E. A. J. F. & Verbists, G. 1996. The conductivity
of a foam. Journal of Physics: Condensed Matter 8: 475- 482.
Sebba,
F. 1985. An improved generator for micron-sized bubbles. Chemistry and
Industry 4: 91-96.
Wang,
Z.L. 2004. Nanostructure of zinc oxide. Materials Today 7: 18-23.
Winter,
M. 2003. Chemistry: Periodic table: Binding energy data. (atas
talian). http://www.webelements.com/webelements/element.html (5 September
2004).
*Pengarang
untuk surat menyurat; email: saifful@ump.edu.my
|