Sains
Malaysiana 41(5)(2012): 561–568
Bacterial Cellulose Film Coating as Drug
Delivery System: Physicochemical,
Thermal and Drug Release Properties
(Penyalutan
Filem Selulosa Bakteria sebagai Satu Sistem Penyampaian Dadah:
Sifat-sifat
Fizikokima, Terma dan Pelepasan Dadah)
Mohd Cairul Iqbal Mohd Amin*, Abadi Gumah Abadi, Naveed Ahmad
Haliza Katas
& Jamia Azdina Jamal
Faculty
of Pharmacy, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300,
Kuala Lumpur, Malaysia
Diserahkan:
21 Julai 2011 / Diterima: 20 Oktober 2011
ABSTRACT
There has been an increasing interest in
the use of natural materials as drug delivery vehicles due to their
biodegradability, biocompatibility and ready availability. These properties
make bacterial cellulose (BC), from nata de coco, a promising biopolymer
for drug delivery applications. The aim of this study was to investigate the
film-coating and drug release properties of this biopolymer. Physicochemical,
morphological and thermal properties of BC films
were studied. Model tablets were film coated with BC, using a
spray coating technique, and in
vitro drug release studies of these tablets were investigated. It
was found that BC exhibited excellent
ability to form soft, flexible and foldable films without the addition of any
plasticizer. They were comparable to Aquacoat ECD (with
plasticizer) in tensile strength, percentage elongation and elasticity modulus.
Differential scanning calorimetry (DSC) BC showed a
high Tg value indicating thermally stability of films.
These results suggest that BC can be used as novel
aqueous film-coating agent with lower cost and better film forming properties
than existing film-coating agents.
Keywords:
Bacterial cellulose; drug delivery; DSC; film-coating; Young’s modulus
ABSTRAK
Penggunaan bahan semula
jadi sebagai satu pendekatan penyampaian dadah semakin mendapat perhatian
disebabkan sifatnya yang bioterurai, bioserasi dan mudah diperoleh. Kepelbagaian sifat ini menjadikan selulosa bakteria (BC)
daripada nata de coco, menjanjikannya
sebagai satu biopolimer untuk aplikasi penyampaian dadah. Kajian ini dilakukan bertujuan untuk menyelidiki sifat penyalutan
filem dan pelepasan dadah biopolimer tersebut. Kajian
fizikokimia, morpologi, dan terma BC telah dilakukan. Penyelidikan ke atas model tablet yang disaluti BC menggunakan
kaedah penyalutan secara semburan dan kajian pelepasan dadah secara in vitro dari tablet telah
dilakukan. Adalah didapati BC menunjukkan
keupayaan yang hebat untuk membentuk filem yang lembut, fleksibel, mudah
dilipat tanpa menambah sebarang bahan pemplastik. Ianya
setanding dengan Aquacoat ECD (dengan bahan pemplastik) daripada
segi kekuatan tensil, peratus pemanjangan dan modulus keelastikan. Pengesanan pembezaan kalorimeter (DSC) BC menunjukkan
satu nilai Tg yang tinggi membuktikan kestabilan
filem secara terma. Hasil keputusan mencadangkan BC boleh
digunakan sebagai agen penyalut filem akues yang baru pada kos yang rendah dan bersifat pembentukan filem lebih baik berbanding agen
penyalutan filem yang sedia ada.
Kata kunci: DSC; modulus Young; penyalutan
filem; penyampaian dadah; selulosa bakteria
RUJUKAN
Abu Diak, O., Bani-Jaber, A., Amro, B.,
Jones, D. & Andrews, G. P. 2007. The Manufacture and Characterization of
Casein Films as Novel Tablet Coatings. Food and Bioproducts Processing 85(3):
284-290.
Amin, M.C.I.M., Halib, N. & Ahmad, I.
2010. Unique Stimuli Responsive Characteristics of Electron Beam Synthesized
Bacterial Cellulose/Acrylic Acid Composite. Journal of Applied Polymer
Science 116(5): 2920–2929.
Béchard, S. R., Levy, L. & Clas, S.D.
1995. Thermal, mechanical and functional properties of cellulose acetate
phthalate (CAP) coatings obtained from neutralized aqueous solutions. International
Journal of Pharmaceutics 114(2): 205-213.
Chen, P., Kim, H.-S.,
Kwon, S.-M., Yun, Y. S. & Jin, H.-J. 2009. Regenerated bacterial
cellulose/multi-walled carbon nanotubes composite fibers prepared by
wet-spinning. Current Applied Physics. 9(2, Suppl. 1): 96-99.
Chen, S., Zou, Y., Yan, Z., Shen, W.,
Shi, S., Zhang, X. & Wang, H. 2009. Carboxymethylated-bacterial
cellulose for copper and lead ion removal. Journal of Hazardous
Materials 161(2-3): 1355-1359.
Cole, G., Hogan, J.
& Aulton, M. E. 1995. Pharmaceutical Coating Technology. London UK,
Bristol USA: Taylor & Francis.
Czaja, W. K., Young, D.
J., Kawecki, M. & Brown Jr, R. M. 2007. The future prospects of microbial
cellulose in biomedical applications. Biomacromolecules 8(1): 1-12.
Fulzele, S. V., Satturwar, P. M. &
Dorle, A. K. 2002. Polymerized rosin: novel film forming polymer for drug
delivery. International Journal of Pharmaceutics 249(1-2): 175-184.
George, J., Ramana, K. V., Sabapathy, S.
N., Jagannath, J. H. & Bawa, A. S. 2005. Characterization of chemically
treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical
properties. International Journal of Biological Macromolecules 37(4):
189-194.
Grande, C. J., Torres,
F.G., Gomez, C.M., Troncoso, O.P., Canet-Ferrer, J. & Martínez-Pastor, J.
2009. Development of self-assembled bacterial cellulose–starch
nanocomposites. Materials Science & Engineering C 29(4):
1098-1104.
Grzegorczyn, S. &
Slezak, A. 2007. Kinetics of concentration boundary layers buildup in the system consisted of
microbial cellulose biomembrane and electrolyte solutions. Journal of
Membrane Science 304(1-2): 148-155.
Halib, N., Amin, M.C.I.M., Ahmad, I.,
Hashim, Z. M. & Jamal, N. 2009. Swelling of Bacterial Cellulose-Acrylic
Acid Hydrogels: Sensitivity Towards External Stimuli. Sains Malaysiana 38(5):
785–791.
Hong, F. & Qiu, K. 2008. An
alternative carbon source from konjac powder for enhancing production of
bacterial cellulose in static cultures by a model strain Acetobacter aceti
subsp. xylinus ATCC 23770. Carbohydrate Polymers 72(3): 545-549.
Hsieh, Y.C., Yano, H.,
Nogi, M. & Eichhorn, S. J. 2008. An estimation of the Young’s modulus of
bacterial cellulose filaments. Cellulose 15(4): 507-513.
Hussain, M.A. 2008. Unconventional
Synthesis and Characterization of Novel Abietic Acid Esters of
Hydroxypropylcellulose as Potential Macromolecular Prodrugs. Journal of
Polymer Science Part A: Polymer Chemistry 46(2): 747–752.
Hu, W., Chen, S., Li,
X., Shi, S., Shen, W., Zhang, X. & Wang, H. 2009. In situ synthesis of
silver chloride nanoparticles into bacterial cellulose membranes. Materials
Science and Engineering C 29(4): 1216-1219.
Klemm, D., Schumann, D., Udhardt, U.
& Marsch, S. 2001. Bacterial synthesized cellulose -- artificial blood
vessels for microsurgery. Progress in Polymer Science 26(9): 1561-1603.
Kurosumi, A., Sasaki, C.,
Yamashita, Y. & Nakamura, Y. 2009. Utilization of various fruit juices as carbon source for
production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate
Polymers 76(2): 333-335.
Kwok, T.S.H., Sunderland, B.V. &
Heng, P.W.S. 2004. An investigation on the influence of a vinyl
pyrrolidone/vinyl acetate copolymer on the moisture permeation, mechanical and
adhesive properties of aqueous-based hydroxypropyl methylcellulose film
coatings. Chemical & Pharmaceutical Bulletin 52(7): 790-796.
Moreira, S., Silva,
N.B., Almeida-Lima, J., Rocha, H.A.O., Medeiros, S.R.B., Alves Jr, C., &
Gama, F.M. 2009. BC
nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology
Letters 189(3): 235-241.
Nishi, Y., Uryu, M.,
Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., & Mitsuhashi, S.
1990. The structure
and mechanical properties of sheets prepared from bacterial cellulose. Journal
of Materials Science 25(6): 2997-3001.
Patel, U.D.
& Suresh, S. 2008. Complete dechlorination of pentachlorophenol using
palladized bacterial cellulose in a rotating catalyst contact reactor. Journal
of Colloid and Interface Science 319(2): 462-469.
Phisalaphong, M., Suwanmajo, T. &
Tammarate, P. 2008. Synthesis and characterization of bacterial
cellulose/alginate blend membranes. Journal of Applied Polymer Science 107(5):
3419-3424.
Rangaiah
KV, Chattaraj, SC & SK, D. 1997. Effects of solvents,
temperature and plasticizer on film coating of tablets. Drug
Development and Industrial Pharmacy 23: 419-423.
Saibuatong,
O.-a. & Phisalaphong, M. 2010. Novo
aloe vera-bacterial cellulose composite film from biosynthesis. Carbohydrate
Polymers 79(2): 455-460.
Säkkinen,
M., Seppälä, U., Heinänen, P., & Marvola, M. 2002. In vitro evaluation of microcrystalline chitosan (MCCh) as
gel-forming excipient in matrix granules. European Journal of
Pharmaceutics and Biopharmaceutics 54(1): 33-40.
Satturwar,
P.M., Fulzele, S.V., Panyam, J., Mandaogade, P.M., Mundhada, D.R., Gogte, B.
B., Labhasetwar, V., & Dorle, A.K. 2004. Evaluation of new rosin derivatives for pharmaceutical coating. International Journal of Pharmaceutics 270(1-2): 27-36.
Shoda, M.
& Sugano, Y. 2005. Recent advances in bacterial cellulose production. Biotechnology
and Bioprocess Engineering 10(1): 1-8.
Shotton,
E. & Ridgway, K. 1974. Physical Pharmaceutics. Oxford: Clarendon
Press.
Tarvainen,
M., Sutinen, R., Peltonen, S., Mikkonen, H., Maunus, J., Vähä-Heikkilä, K.,
Lehto, V.-P. & Paronen, P. 2003. Enhanced
film-forming properties for ethyl cellulose and starch acetate using n-alkenyl
succinic anhydrides as novel plasticizers. European Journal of
Pharmaceutical Sciences 19(5): 363-371.
Tarvainen,
M., Sutinen, R., Peltonen, S., Tiihonen, P., & Paronen, P. 2002. Starch
acetate—A novel film-forming polymer for pharmaceutical coatings. Journal
of Pharmaceutical Sciences 91(1): 282-289.
Vandamme,
E.J., De Baets, S., Vanbaelen, A., Joris, K. & De Wulf, P. 1998. Improved production of bacterial cellulose and its application
potential. Polymer Degradation and Stability 59(1-3): 93-99.
Wang, Y.,
Luo, Q., Peng, B. & Pei, C. 2008. A novel thermotropic
liquid crystalline - Benzoylated bacterial cellulose. Carbohydrate
Polymers 74(4): 875-879.
Wan,
Y.Z., Luo, H., He, F., Liang, H., Huang, Y., & Li, X. L. 2009. Mechanical,
moisture absorption, and biodegradation behaviours of bacterial cellulose
fibre-reinforced starch biocomposites. Composites Science and Technology 69(7-8):
1212-1217.
Wippermann,
J., Schumann, D., Klemm, D., Kosmehl, H., Salehi-Gelani, S., & Wahlers, T.
2009. Preliminary Results of Small Arterial
Substitute Performed with a New Cylindrical Biomaterial Composed of Bacterial
Cellulose. European Journal of Vascular and Endovascular Surgery 37(5):
592-596.
Yuasa,
H., Kaneshige, J., Ozeki, T., Kasai, T., Eguchi, T. & Ishiwaki, N. 2002. Application of acid-treated yeast cell wall (AYC) as a
pharmaceutical additive. III. AYC aqueous coating onto granules and film
formation mechanism of AYC. International Journal of Pharmaceutics 237(1-2):
15-22.
*Pengarang
untuk surt-menyurat; email: mciamin@pharmacy.ukm.my
|