Sains
Malaysiana 41(5)(2012): 603–609
Chemically Modified Multi-walled Carbon
Nanotubes (MWCNTs) with
Anchored Acidic Groups
(Pengubahsuaian
Secara Kimia ke atas Nanotiub Karbon denganMulti-berdinding
Menggabungkan
Kumpulan Berasid)
Nuruzatulifah Bt Asari @ Mansor* , M.G. Kutty & S.B. Abd
Hamid
Combinatorial Technology
and Catalysis Research Centre (COMBICAT), Universiti Malaya
50603 Kuala Lumpur, Malaysia
Jean-Philippe Tessonnier
, Ali Rinaldi , Sylvia Reiche & Robert Schlögl
Fritz Haber Institute of
Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
Diserahkan: 25 April
2011 / Diterima: 18 November 2011
ABSTRACT
Surface functionalization of multi-walled
carbon nanotubes (MWCNTs) was carried out using
a gas phase treatment in a Universal Temperature Program (UTP) reactor
by flowing SO3 gas onto
the CNTs while being heated at different temperatures.
The functionalized nanotubes were characterized using X-ray Fluorescence (XRF),
Fourier Transform Infrared Spectroscopy (FT-IR) and Raman
spectroscopy. The amount of oxyen and sulfur containing groups was determined
by acid-base titration. The titration results were in good agreement with
elemental analysis using x-ray fluorescence. FTIR analysis
showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and -COOH. Raman
spectroscopy confirmed that oxygen and sulfur containing acidic groups
covalently attached to the sidewall of the MWCNTs.
Keywords:
Carbon nanotubes; characterization; functionalization; sulphur-based surface
ABSTRAK
Fungsionalisasi permukaan nanotiub karbon
multi-berdinding (MWCNTs) dilakukan dengan
menggunakan rawatan fasa gas dalam reaktor Universal Temperature Program (UTP) dengan
mengalirkan gas SO3 ke dalam MWCNT sambil
dipanaskan pada suhu yang berbeza. Nanotiub karbon yang difungsikan dianalisis
menggunakan pendaflour sinar-X (XRF),
spektroskopi inframerah penjelmaan fourier (FT-IR) dan
spektroskopi Raman. Jumlah oksigen dan kumpulan yang mengandungi sulfur
ditentukan dengan titrasi asid-alkali. Keputusan titrasi berkesesuaian dengan
analisis unsur menggunakan XRF. Analisis FTIR menunjukkan
adanya oksigen dan kumpulan yang mengandungi sulfur, S=O, C-S, C = O dan-COOH.
Spektroskopi Raman mengesahkan bahawa oksigen dan sulfur adalah kumpulan asid yang
diikat secara kovalen pada dinding permukaan MWCNTs.
Kata
kunci: Ciri; fungsionalisasi; permukaan asas sulfur; nanotiub karbon
RUJUKAN
Barkauskas,
J. & Dervintyl, M. 2004. An investigation of the functional groups on the
surface of activated carbon. Journal of Serbia of Chemical Society 69:
363 – 375.
Clark, A.
1974. The Chemisorptive Bond. New York & London: Academic Press.
Dresselhaus,
M.S., Rao, A.M. & Dresselhaus, G. 2004. Raman Spectroscopy in carbon
nanotubes. Encyclopedia of Nanoscience and Nanotechnology 9: 307- 338.
Haris,
P.J.F. 2009. Carbon Nanotube Science; Synthesis, Properties and Application.
UK: Cambridge University Press.
Jeong,
Y., Kim, J. & Lee, G.W. 2010. Optimizing functionalization of multiwalled
carbon nanotubes using sodium lignosulfonate. Colloid Polymer Science 288:
1 – 6.
Ma, C.,
Zhang, W., Zhu, Y., Ji, L., Zhang, R., Koratkar, N. & Liang, J. 2008.
Alignment and dispersion of functionalized carbon nanotubes in polymer
composites induced by an electric field. Carbon 46: 706-720.
Murakami,
K., Kondo, R., Fuda, K. & Matsunaga, T. 2003. Acidity distribution of
carboxyl groups in Loy Yang brown coal: its analysis and change by heat
treatment. Journal of Colloid and Interface Science 260: 176-183.
Naseh,
M.V., Khodadadi, A.A., Mortazavi, Y., Sahraei, O.A., Pourfayaz, F. &
Sedghi, S. M. 2009. Functionalization of carbon nanotubes using nitric
oxidation and DBD plasma. World Academy of Science Engineering and
Technology19: 177 – 179.
Nyouist,
R.A. 2001. Interpretating Infrared, Raman and Nuclear Magnetic Resonance
Spectra : Variables in Data Interpretation of Infrared and Raman Spectra.
New York: Academic Press.
Owens,
F.J. & Poole, C.P. 2008. The Physics and Chemistry of Nanosolids.
USA: John Wiley & Sons, Inc.
Puziy, A.M., Poddubnaya, O.I., Ritter, J.A.,
Ebner, A.D. & Holland, C.E. 2001. Elucidation of the ion binding mechanism
in heterogeneous carbon-composite adsorbents. Carbon 39: 2313 –
2324.
Silverstein, R.M. &
Bassler, G.C. 1991. Spectroscopic Identification of Organic Compound.
Los Altos California: John Wiley & Son, Inc.
Serp, P.
& Figueiredo, J.L. 2009. Carbon Material for Catalysis. New Jersey:
John Wiley & Sons. Inc.
Tessonnier,
J.P., Rosenthal, D., Hansen, T.W., Hess, C., Schuster, M.E., Blume, R., Pfander
, N., Timpe, O., Su, D.S. & Scheog, R. l. 2009. Analysis of the structure
and chemical properties of some commercial carbon nanostructures. Carbon 47:
1779-1798.
Wang, Y.,
Duan, Y., Yang L., Zhao, C., Shen, X., Zhang, M., Zhuo, Y. & Chen, C. 2009.
Experimental study on mercury transformation and removal in coal-fired boiler
flue gasses. Fuel Processing Technology 90: 643-651.
Wang, Z.,
M. Shirley, D., Meikle, S. T., Whitby, R. L. D. & Mikhalovsky S.V. 2009.
The surface of acid oxidized multi-walled carbon nanotubes and the influenced
of in-siitu generated fulvic acid on their stability in aqueous dispersions. Carbon 47 : 73-79.
Yu, H.,
Jin, Y., Li, Z., Peng, F.& Wang, H. 2008. Synthesis and characterization of
sulfonated single –walled carbon nanotubes and their performance as solid
acid catalyst. Journal of solid State Chemistry 181: 432 – 438.
Zhang,
X., Yang, D. Xu, P., Wang, C. & Du, Q. 2007. Characterizing the surface
properties of carbon nanotubes by inverse gas chromatography. Journal
Material Science 42: 7069-7075.
*Pengarang
untuk surat menyurat; email: nuruz@siswa.um.edu.my
|