| 
          
          Sains Malaysiana 42(1)(2013):
            99–105
            
           
             
         Lactate Dehydrogenase Activity During Tooth Movement under
            1.0 N and 1.5 N Continuous Force Applications
            
           (Aktiviti Laktat Dehidrogenase Semasa Pergerakan Gigi dengan
            Aplikasi Tekanan 1.0 N dan 1.5 N Secara Berterusan)
            
           
             
           Shahrul Hisham Zainal Ariffin & Nurfathiha Abu Kasim
            
           School of Bioscience and Biotechnology, Faculty of Science
            and Technology
            
           Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
            
           
             
           Rohaya Megat Abdul Wahab*
            
           Department of Orthodontics, Faculty of Dentistry, Universiti
            Kebangsaan Malaysia
            
           50300 Kuala Lumpur, Malaysia
            
           
             
           Abdul Aziz Jemain
            
           DELTA, School of Mathematics, Faculty of Science and
            Technology
            
           Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E.Malaysia
            
           
             
           Diserahkan: 19 Disember 2011 / Diterima: 10 Julai 2012
            
           
             
           ABSTRACT
            
           
             
           The aim of this study was to observe the pattern of lactate
            dehydrogenase (LDH) activity in GCF and the rate of tooth
            movement at two different orthodontic forces (1.0 N and 1.5 N). Twelve subjects
            participated in this study and was chosen based on the inclusion criteria. Each
            subject received forces of 1.0 N and 1.5 N for tooth movement either on the
            left or right side of the maxillary canine. GCF sample was collected
            at mesial and distal sites of the canines before applying the appliance (week
            0) and every week for 5 weeks after tooth movement (week 1 to week 5) where
            baseline activity served as control. LDH activity was assayed spectrophotometically
            at 340 nm. The tooth movements were measured from casted study models. LDH specific
            activity at mesial sites in 1.0 N and 1.5 N force groups, respectively
            increased significantly (p<0.05)
              only on week four and throughout the treatment when compared with baseline. At
              distal sites, LDH specific activity with 1.5 N was higher than 1.0 N throughout the
              five weeks of tooth movement. LDH specific activity with 1.5 N force
              increased at both mesial (week 2) and distal sites (week 3) with significant
              different (p<0.05) when compared with 1.0 N force. Tooth movement
                with 1.5 N showed significantly faster (p<0.05) at the end of week 5
                  when compared with 1.0 N. LDH has the potential as a biological marker
                  of inflammation during tooth movement.A force of 1 N was more suitable to be
                  used although less tooth movement was produced because less inflammation caused
                  by the force can be useful in orthodontic treatment for patients with
                  stabilised periodontal diseases compared with 1.5 N force.
  
 
             
           Keywords: Biological marker; inflammation; lactate dehydrogenase;
            orthodontic force; tooth movement
  
 
             
           ABSTRAK
            
           Kajian ini bertujuan untuk melihat corak aktiviti laktat
            dehidrogenase (LDH) di dalam GCF dan kadar pergerakan gigi pada dua daya tekanan ortodontik yang
            berbeza (1.0 N dan 1.5 N). Dua belas orang subjek telah
              mengambil bahagian dalam kajian ini dan mereka dipilih berdasarkan beberapa
              kriteria yang telah ditetapkan. Setiap subjek menerima 1.0 N dan 1.5 N
            daya tekanan untuk pergerakan gigi sama ada pada
            bahagian kanan atau kiri gigi taring maksila. Sampel GCF dikumpul dari
            bahagian mesial dan distal gigi taring sebelum dipakaikan pendakap gigi (minggu
            0) dan setiap minggu untuk lima minggu selepas gigi
            digerakkan (minggu 1 hingga minggu 5) dengan aktiviti basal dijadikan sebagai
            kawalan. Aktiviti LDH diasai menggunakan pendekatan
              spektrofotometri pada 340 nm. Pergerakan gigi diukur daripada
            model-model kajian yang telah dibentuk. Aktiviti spesifik LDH pada bahagian mesial
            dalam kumpulan tekanan 1.0 N dan 1.5 N masing-masing meningkat secara
            signifikan (p<0.05) hanya pada
              minggu 4 dan sepanjang rawatan berbanding kawalan. Pada bahagian distal,
              aktiviti spesifik LDH dengan 1.5 N adalah lebih tinggi
              berbanding 1.0 N sepanjang lima minggu pergerakan
              gigi. Aktiviti spesifik LDH dengan tekanan 1.5 N meningkat (p<0.05)
                pada kedua-dua bahagian mesial (minggu 2) dan distal (minggu 3) berbanding
                tekanan 1.0 N. Pergerakan gigi dengan 1.5 N lebih pantas (p<0.05)
                  pada akhir minggu 5 berbanding dengan 1.0 N. LDH berpotensi sebagai
                  penanda biologi untuk inflamasi semasa pergerakan gigi. Daya tekanan 1.0 N
                  berbanding 1.5 N lebih sesuai digunakan walaupun ia menghasilkan kurang pergerakan gigi kerana penghasilan inflamasi yang rendah
                  adalah penting dalam rawatan ortodontik kepada pesakit periodontal yang telah
                  stabil.
  
 
             
           Kata kunci: Inflamasi; laktat dehidrogenase;
            penanda biologi; pergerakan gigi; tekanan ortodontik
            
           RUJUKAN
            
           
             
           Apajalahti, S., Sorsa, T.,
            Railavo, S. & Ingman, T. 2003. The in vivo levels of matrix
              metalloproteinase -1 and -8 in gingival crevicular fluid during initial
              orthodontic tooth movement. J. Dent. Res. 82: 1018-1022.
  
 Asma, A.A.A., Rohaya, M.A.W. & Shahrul
            Hisham, Z.A. 2011. Pattern of crevicular alkaline phosphatase during
            orthodontic tooth movement: Leveling & alignment stage. Sains Malaysiana 40(10): 1147-1151.
  
           Drent, M., Cobben, N.A.M., Henderson,
            R.F., Wouters, E.F.M. & van Dieijen-Visser, M. 1996. Usefulness of lactate
              dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur. Resp. J. 9: 1736-1742.
  
 Jin, L. 2007. Periodontic-orthodontic
            interactions-rationale, sequence and clinical implications. Hong Kong
              Dent. J. 4: 60-64.
  
           Kavadia-Tsatala, S.,
            Kaklamanos, E.G. & Tsalikis, L. 2002. Effects
              of orthodontic treatment on gingival crevicular fluid flow rate and
              composition: Clinical implications and applications. Int.
                J. Adult Orthod. Orthognath. Surg. 17: 191-205.
  
 King, G.J., Keeling, S.D. & Wronski, T.J. 1991. Histomorphometric study
            of alveolar bone turnover in orthodontic tooth movement. Bone 12:
            401-9.
  
           Krishnan, V. & Davidovitch, Z.
            2006. Cellular, molecular
              and tissue-level reactions to orthodontic force. Am. J. Orthod.
                Dentofacial Orthop. 129(469): e1-32.
  
 Lamster, I.B. & Ahlo, J.K. 2007. Analysis of gingival crevicular fluid as applied to the
            diagnosis of oral and systemic diseases. Ann. N. Y. Acad. Sci. 1098: 216-229.
  
           Perinetti, G., Baccetti, T., Contardo,
            L. & Di Lenarda, R. 2011. Gingival crevicular fluid alkaline phosphatase activity as a
              non-invasive biomarker of skeletal maturation. Orthod. Craniofac. Res.
              14: 44-50.
  
 Perinetti, G., Paolantonio, M., D’Attilio, M., D’Archivio,
            D., Dolci, M., Femminella, Beatrice., Festa, F. &
            Spoto, G. 2003. Aspartate aminotransferase activity in
              gingival crevicular fluid during human orthodontic tooth movement. A controlled short-term longitudinal study. J.
                Periodontol. 74: 145-152.
  
           Perinetti, G., Paolantonio, M.,
            D’Attilio, M., D’Archivio, D., Tripodi, D., Femminella, B., Festa, F. &
            Spoto, G. 2002. Alkaline phosphatase
              activity in gingival crevicular fluid during human orthodontic tooth movement. Am. J. Orthod. Dentofacial. Orthop. 122: 548-556.
  
 Perinetti, G., Serra, E., Paolantonio, M., Bruè, C., Di Meo,
            S., Filippi, M.R., Festa, F. & Spoto, G. 2005. Lactate dehydrogenase
            activity in human gingival crevicular fluid during orthodontic treatment: A
            controlled, short-term longitudinal study. J. Periodontol. 76: 411-417.
  
           Py, O-M., Kurol, J. & Lundgren,
            D. 1996. The effects of a four-fold increased orthodontic
              force magnitude on tooth movement and root resorptions. An intra-individual study in adolescents. Eur. J. Orthod. 18: 287-294.
  
           Ren, Y., Jaap, C.M. & Kuijpers-Jagtman, A.M. 2003.
            Optimum force magnitude for orthodontic tooth movement: A systematic literature
            review. Angle Orthod. 73: 86-92.
  
           Roberts-Harry, D. & Sandy, J. 2004. Orthodontics. Part
            11: Orthodontic tooth movement. Bri. Dent. J. 196: 391-394.
  
           Rohaya, M.A.W., Maryati, M.D., Sahidan, S., Asma Alhusna,
            A.A., Abdul Aziz, J., Nurfathiha, A.K., Zulham, Y. & Shahrul Hisham, Z.A.
            2011. Crevicular tartrate resistant acid phosphatase activity
              and rate of tooth movement under different continuous force applications. Afr. J. Pharm. Pharmacol. 5(20): 2213-2219.
  
           Rohaya, M.A.W., Shahrul Hisham, Z.A., Khazlina, K. 2008. The activity of aspartate aminotransferase during canine retraction
            (bodily tooth movement) in orthodontic treatment. J. Med. Sci. 8(6):
            553-558.
  
           Rygh, P. 1972. Ultrastructural changes in pressure zones of
            rat molar periodontium incident to orthodontic movement. Acta Odontol.
              Scand. 30: 575-593.
  
           Rygh, P. 1976. Ultrastructural changes in tension zones of
            rat molar periodontium incident to orthodontic movement. Am. J. Orthod.
            70: 269-281.
  
           Sarah, A.A. & Sukumaran, A. 2011. Lactate
            dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic
            tooth movement. Open Dent. J. 5: 105-109.
  
           Serra, E., Perinetti, G., D’Attilio,
            M., Cordella, C., Paolantonio, M. & Spoto, G. 2003. Lactate dehydrogenase activity in
              gingival crevicular fluid during orthodontic treatment. Am. J.
                Orthod. Dentofacial Orthop. 124: 206-211.
  
 Shahrul Hisham, Z.A., Mohd Faiz, E., Rohaya, M.A.W., Yosni,
            B. & Sahidan, S. 2010. Profile of lactate dehydrogenase,
              tartrate resistant acid phosphatase and alkaline phosphatase in saliva during
              orthodontic tooth movement. Sains Malaysiana 39(3): 405-412.
  
           Toms, S.R., Lemons, J.E., Bartolucci,
            A.A. & Eberhardt, A.W. 2002. Nonlinear stress-strain behavior of periodontal ligament under
              orthodontic loading. Am. J. Orthod. Dentofacial Orthop. 122: 174-179.
  
 Víctor Alonso De La Peña, Pedro Diz
            Dios & Rafael Tojo Sierra. 2007.
              Relationship between lactate dehydrogenase activity in saliva and oral health
              status. Arch. Oral. Biol. 52(10): 911-915.
  
 Wise, G.E. & King, G.J. 2008. Mechanisms
            of tooth eruption and orthodontic tooth movement. J. Dent. Res.
            7(5): 414-434.
  
           
             
           
             
         *Pengarang
            untuk surat-menyurat; email: shahroy7@gmail.com       |