| 
           Sains Malaysiana 42(3)(2013): 341–346
            
             A
            Fourth-order Compact Finite Difference Scheme for the Goursat Problem  (Skema Beza Terhingga Padat Peringkat Empat untuk Masalah Goursat)
            
           
             
           Mohd Agos Salim bin Nasir*
            
           Faculty
            of Computer and Mathematical Sciences, Universiti Teknologi MARA Malaysia
  
           40450
            Shah Alam, Selangor D.E. Malaysia
  
           
             
           Ahmad Izani bin Md Ismail
            
           School
            of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
  
           
             
           Diserahkan: 3 Februari 2012 / Diterima: 17 September 2012
            
           
             
           ABSTRACT
            
           A high-order uniform Cartesian grid
            compact finite difference scheme for the Goursat problem is developed. The basic idea of high-order compact schemes is to find
            the compact approximations to the derivatives terms by differentiating
            centrally the governing equations. Our compact scheme will approximate the
            derivative terms by involving the higher terms and reducing the number of grid
            points. The compact finite difference scheme is given for general form of the Goursat problem in uniform domain and illustrates the
            performance by applying a linear problem. Numerical experiments have been conducted
            with the new scheme and encouraging results have been obtained. In this paper
            we present the compact finite difference scheme for the Goursat problem. With the aid of computational software the scheme was programmed for
            determining the relative errors of linear Goursat problem.
  
           
             
           Keywords: Compact finite difference;
            consistency; convergence; Goursat problem; stability
  
 
             
           ABSTRAK
            
           Skema beza terhingga padat bagi grid Kartesan seragam peringkat tinggi untuk masalah Goursat dibincangkan. Idea asas bagi skema padat peringkat tinggi ialah untuk mendapatkan penghampiran padat sebutan-sebutan terbitan dengan membezakan secara memusat persamaan yang bersekutu. Skema padat kami akan membuat penghampiran sebutan-sebutan terbitan dengan melibatkan sebutan-sebutan peringkat lebih tinggi dan mengurangkan bilangan titik-titik grid. Skema beza terhingga padat diberikan dalam bentuk am untuk masalah Goursat di dalam domain seragam dan prestasinya digambarkan dengan mengaplikasi satu masalah linear. Uji kaji berangka dengan skema baru telah dijalankan dan keputusan memberangsangkan telah  diperoleh. Dalam kertas  ini kami berikan skema beza terhingga padat untuk masalah Goursat. Dengan bantuan perisian pengkomputeran, skema telah diatur cara untuk menentukan pelbagai ralat relatif bagi masalah Goursat linear.
            
           
             
           Kata kunci: Beza terhingga padat; ketekalan; kestabilan; masalah Goursat; penumpuan
                
           RUJUKAN
            
           
             
           Ahmed, M.O.
            1997. An exploration of compact finite difference methods for
              the numerical solution of PDE. PhD dissertation. Western Ontario London
            University (unpublished).
  
           Boersma, B.J. 2005. A staggered
            compact finite difference formulation for the compressible Navier-Stokes
            equations. Journal of Computational Physics 208: 675-690.
  
           Bodenmann, R. & Schroll,
            H.J. 1996. Compact difference methods applied to initial boundary value
            problems for mixed systems. Numer. Math.
            73: 291-309.
  
           Day, J.T.
            1966. A Runge-Kutta method for the
              numerical solution of the Goursat problem in
              hyperbolic partial differential equations. Computer Journal 9:
            81-83.
  
           Evans, D.J.
  & Sanugi, B.B. 1988. Numerical
    solution of the Goursat problem by a nonlinear
    trapezoidal formula. Applied Mathematics Letter 3: 221-223.
  
           Fletcher,
            C.A.J. 1990. Computational Techniques for Fluid Dynamics. 2nd ed.
            Berlin: Springer Verlag.
  
           Frisch, R.A.
  & Cheo, B.R. 1972. On a bounded one dimensional Poisson-Vlasov system. Society for Industry and Applied Mathematics 3: 362-368.
  
           Garabedian, P. 1964. Partial
            Differential Equations. New York: John Wiley & Sons Inc.
  
           Hillion, P. 1992. A note on the
            derivation of paraxial equation in nonhomogeneous media. SIAM Journal
              of Applied Mathematics 2: 337-346.
  
           Kyei, Y. 2004. Higher order Cartesian grid based finite difference
            methods for elliptic equations on irregular domains and interface problems and
            their applications. PhD dissertation. North Carolina State University, USA
            (unpublished).
            
           Kaup, D.J. & Newell, A.C. 1978. The Goursat and Cauchy problems for the Sine Gordon equation. SIAM Journal of Applied Mathematics 1: 37-54.
            
           Li, J. & Visbal, M.R. 2006. High order
            compact schemes for nonlinear dispersive waves. Journal of Scientific
              Computing 26: 1-23.
  
           Li, J. &
            Chen, Y. 2004. High order compact schemes for dispersive
              media. Electronics Letters 40: 14.
  
           Li, M. & Tang, T. 2001. A compact
            fourth order finite difference scheme for unsteady viscous incompressible
            flows. Journal of Scientific Computing 16: 29-45.
  
           Mclaughlin, J.R., Polyakov, P.L.
  & Sacks, P.E. 1994. Reconstruction of a spherical
    symmetric speed of sound. SIAM Journal of Applied Mathematics 5:
            1203-1223.
  
           Nasir, M.A.S. & Ismail, A.I.M. 2005. A new finite
            difference scheme for the Goursat problem. IASME
              Transactions 2: 98-103.
  
           Nasir, M.A.S. & Ismail, A.I.M. 2004. Numerical solution of a linear Goursat problem: Stability, consistency and
            convergence. WSEAS Transactions on Mathematics 3: 616-620.
  
           Richtmyer, R. & Morton, K.W. 1967. Difference
            Methods for Initial Value Problems. New York: John Wiley
  & Sons.
  
           Spotz, W.F. 1995. High order compact finite difference schemes for computational
            mechanics. PhD dissertation. Texas University. Austin, USA (unpublished).
  
           Twizell, E.H. 1984. Computational
            Methods for Partial Differential Equations. Chichester: Ellis Horwood Limited. 
  
           Wazwaz, A.M. 1995. The decomposition
            method for approximate solution of the Goursat problem. Applied Mathematics and Computation 69: 299-311.
  
           Wazwaz, A.M. 1993. On the numerical
            solution for the Goursat problem. Applied
              Mathematics and Computation 59: 89-95.
  
           Zhao, J.,
            Zhang, T. & Corless, R.M. 2006. Convergence of the compact finite difference method for second
              order elliptic equations. Applied Mathematics and Computation 182:
            1454-1469.
  
           Zhao, J., Corless, R.M. & Davison,
            M. 2005. Financial applications of symbolically generated compact finite difference
              formulae. Dept. of Applied Mathematics. London:
              Western Ontario London University.
  
 *Pengarang untuk surat-menyurat; email: masn@tmsk.uitm.edu.my   
            
            
           |