| 
          
          
              
               Sains Malaysiana 42(7)(2013): 1003–1010
            
             Spatial Analysis of Infant Mortality in Peninsular Malaysia
            over
            
           Three Decades Using Mixture Models
            
           (Analisis Reruang bagi Kematian Bayi di Semenanjung Malaysia dalam
            Tempoh Tiga
            
           Dekad Menggunakan Model Campuran)
            
           
             
           
             
           Nuzlinda Abdul Rahman*
            
           School of Mathematical Sciences, Universiti
            Sains Malaysia, 11800 Penang, Malaysia
            
           
             
           Abdul Aziz Jemain
            
           School of Mathematical Sciences, Faculty of
            Science and Technology,
            
           Universiti Kebangsaan Malaysia, 43000 Bangi,
            Selangor, D.E.Malaysia
            
           
             
           Diserahkan: 10 November 2011/Diterima: 25
            Januari 2013
            
           
             
           ABSTRACT
            
           Infant mortality is one of the central public issues in most of
            the developing countries. In Malaysia, the infant mortality rates have improved
            at the national level over the last few decades. However, the issue concerned
            is whether the improvement is uniformly distributed throughout the country. The
            aim of this study was to investigate the geographical distribution of infant
            mortality in Peninsular Malaysia from the year 1970 to 2000 using a technique
            known as disease mapping. It is assumed that the random variable of infant
            mortality cases comes from Poisson distribution. Mixture models were used to
            find the number of optimum components/groups for infant mortality data for
            every district in Peninsular Malaysia. Every component is assumed to have the
            same distribution, but different parameters. The number of
              optimum components were obtained by maximum likelihood approach via the EM algorithm.
            Bayes theorem was used to determine the probability of belonging to each
            district in every components of the mixture distribution. Each district was
            assigned to the component that had the highest posterior probability of
            belonging. The results obtained were visually presented in maps. The analysis
            showed that in the early year of 1970, the spatial heterogeneity effect was
            more prominent; however, towards the end of 1990, this pattern tended to
            disappear. The reduction in the spatial heterogeneity effect in infant
            mortality data indicated that the provisions of health services throughout the
            Peninsular Malaysia have improved over the period of the study, particularly
            towards the year 2000.
  
           
             
           Keywords: Disease mapping; infant mortality; mixture model
            
           
             
           ABSTRAK
            
           
             
           Mortaliti bayi merupakan salah satu isu penting
            bagi kebanyakan negara membangun. Di Malaysia, kadar kematian bayi pada
              peringkat kebangsaan telah bertambah baik sejak beberapa dekad yang lalu. Walau
              bagaimanapun, isu yang akan diketengahkan adalah untuk
              mengetahui sama ada penambahbaikan ini berlaku secara seragam di seluruh negara
              atau sebaliknya. Tujuan kajian ini ialah untuk mengkaji taburan geografi bagi
              kematian bayi di Semenanjung Malaysia dari tahun 1970 sehingga 2000 menggunakan
              teknik yang dikenali sebagai pemetaan penyakit. Diandaikan pemboleh
                ubah rawak kes kematian bayi adalah daripada taburan Poisson. Model campuran digunakan untuk mendapatkan bilangan
                  komponen/kumpulan yang optimum bagi data mortaliti bayi bagi setiap daerah di
                  Semenanjung Malaysia. Setiap komponen diandaikan mempunyai taburan yang sama tetapi parameter yang berbeza. Bilangan
                    komponen yang optimum diperoleh menerusi kaedah kebolehjadian maksimum melalui
                    algoritma EM. Teorem Bayes digunakan untuk
                      mengenal pasti kebarangkalian daerah berada dalam setiap komponen bagi taburan
                      campuran yang disuaikan. Setiap daerah diumpukkan
                        kepada komponen yang mempunyai kebarangkalian posterior tertinggi. Keputusan yang diperoleh dipaparkan menerusi peta. Analisis menunjukkan pada awal tahun 1970-an, kesan heterogen
                          reruang adalah lebih ketara, walau bagaimanapun, pada akhir 1990-an, keadaan
                          tersebut telah semakin berkurangan. Pengurangan kesan
                            heterogen reruang dalam data kematian bayi menunjukkan bahawa kemudahan
                            kesihatan yang disediakan di seluruh Semenanjung Malaysia telah semakin baik
                            sepanjang tempoh yang dikaji, terutamanya menjelang tahun 2000.
  
 
             
           Kata kunci: Kematian bayi; model campuran;
            pemetaan penyakit
            
           RUJUKAN
            
           Adebayo, S.B., Fahrmeir, L. & Klasen, S.
            2004. Analyzing infant mortality with geoadditive categorical regression model:
            A case study for Nigeria. Economics and Human Biology 2: 229-244.
  
           Alves, D. & Belluzzo, W. 2004. Infant mortality and child health in Brazil. Economics
            and Human Biology 2: 391-410.
  
           Bohning, D., Schlattmann,
            P. & Lindsay, B. 1992. Computer-assisted analysis of mixtures (C.A.MAN): Statistical
              algorithms. Biometrics 48: 283-303.
  
 Chandrasekaran, S.K. & Arivarignan, G. 2006. Disease mapping using mixture distribution. Indian
            Journal of Medical Research 123(6): 788-798.
  
           Clayton, D. & Kaldor, J. 1987. Empirical
            Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43: 671-681.
  
           Estimates of Malaysia
            Federal Revenue and Expenditure. Ministry of Finance Malaysia. 1970-2000.
  
 Everitt, B.S. & Hand, D.J. 1981. Finite Mixture Distributions. New York: Chapman and
            Hall.
            
           Laskar, M.S. & Harada, N. 2005. Trends and regional variations in infant mortality rates in Japan,
            1973-1998. Public Health 119(7): 659-663.
  
           Lawson, A.B. & Williams, F.L.R. 2001. An Introductory Guide to Disease Mapping. Chichester:
            John Wiley & Sons.
  
           Lawson, A.B., Browne, W.J. & Rodeiro, C.L.V. 2003. Disease Mapping with WinBUGS and MlwiN. New
            York: Wiley.
            
           Mantel, N. & Stark,
            C.R. 1968. Computation
              of indirect-adjusted rates in the presence of confounding. Biometrics 24: 997-1005.
  
 Marshall, R.J. 1991. Mapping disease and
            mortality rates using empirical Bayes estimators. Applied Statistics 40:
            283-294.
  
           Meza, J.L. 2003. Empirical
            Bayes estimation smoothing of relative risks in disease mapping. Journal
              of Statistical Planning and Inference 112: 43-62.
  
           Mohamed, W.N., Diamond, I. & Smith, W.F.P.
            1998. The determinants of infant mortality in Malaysia: A graphical chain
            modeling approach. Journal of the Royal Statistical Society A 161(3):
            349-366.
  
           Pollard, A.H., Yusuff, F.
  & Pollard, G.N. 1981. Demographic Techniques. Sydney: Pergamon Press.
  
 Rattanasiri, S., Bohning, D., Rojanavipart, P.
  & Athipanyakom, S. 2004. A mixture model application in
    disease mapping of malaria. Southeast Asian Journal Trop. Med. Public
      Health 35: 38-47.
  
           Rutstein, S.O. 2005. Effects of preceding birth intervals on neonatal, infant and under-five
            years mortality and nutritional status in developing countries: Evidence from
            the demographic and health surveys. International Journal of Gynecology and
              Obstetrics 89: 7-24.
  
           Schlattmann, P. & Bohning, D. 1993. Mixture models and disease mapping. Statistics in
            Medicine 12: 1943-1950.
  
           Schlattmann, P., Dietz, E.
  & Bohning, D. 1996. Covariate adjusted mixture models and disease mapping ith the program
    Dismapwin. Statistics in Medicine 12: 919-929.
  
 Social Statistics Bulletin Malaysia, Department
            of Statistics Malaysia. 1965-2002.
            
           Turrell, G. & Mengersen, K. 2000.
            Socioeconomic status and infant mortality in Australia: A national study of
            small urban areas, 1985-1989. Social Science & Medicine 50:
            1209-1225.
  
           Vital Statistics Malaysia, Department of
            Statistics Malaysia. 1964-2000.
            
           Waller, L.A. & Gotway, C.A. 2004. Applied
            Spatial Statistics for Public Health Data. New Jersey: John Wiley &
            Sons.
  
           
             
           *Pengarang untuk surat-menyurat; email: nuzlinda@usm.my 
            
            
   |