| 
          
          
              
               Sains Malaysiana 42(7)(2013): 967–974
            
             Sintesis dan Kawalan Morfologi Struktur-Nano TiO2 Menggunakan Kaedah Hidroterma untuk Aplikasi sebagai Elektrod Sel Suria Sensitif Pewarna
            
           (Synthesis and Morphology Control of TiO2 Nanostructures via
            Hydrothermal Method
            
           for Applications as Electrodes in Dye-Sensitized Solar Cells)
            
           
             
           
             
           An’amt Mohamed Noor
            
           Jabatan Sains Bumi, Fakulti Agro Industri Dan Sumber Asli, Universiti Malaysia Kelantan
            
           Kampus Jeli, Beg Berkunci No. 100, 17600 Jeli, Kelantan, Malaysia
            
           
             
           Huang Nay Ming & Lim Hong Ngee
            
           Solid State Physics Research Group, Department of Physics, Faculty
            of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
            
           
             
           Shahidan Radiman, Sapizah Rahim, Shahrul Izwan Ahmad & Siti Aisyah Shamsudin
            
           Program Sains Nuklear, Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi
            
           Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia
            
           
             
           Mohd Ambar Yarmo
            
           Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi
            
           Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia
            
           
             
           Mohd Shaiful Sajab
            
           Pusat Pengajian Sains Bahan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
            
           43600 Bangi, Selangor, D.E. Malaysia
            
           
             
           Diserahkan: 21 Februari 2012/Diterima: 23 Januari 2013
            
           
             
           ABSTRAK
            
           Struktur-nano TiO2 dengan pelbagai saiz dan bentuk telah disintesis melalui kaedah hidrotermal menggunakan serbuk nanozarah TiO2 sebagai prekursor. Sistem hidrotermal yang mudah, murah dan bebas templet pada suhu rawatan 180ºC, pengaruh medium
            alkali dengan penambahan NaOH dan KOH ke atas saiz, morfologi dan sifat fotovoltaik struktur-nano TiO2 telah dikaji. Sampel telah diperincikan oleh mikroskopi elektron transmisi (TEM), analisis penyebaran tenaga sinar-x (EDAX) manakala keupayaan fotovoltaik sel suria sensitif pewarna (DSSC) diukur menggunakan Gamry Potentiostat Series G-300. Hasil kajian dengan menggunakan agen alkali yang berlainan (NaOH dan KOH) jelas mempengaruhi morfologi TiO2 dan sel suria sensitif pewarna yang terdiri daripada struktur nanorod TiO2 menunjukkan keupayaan terbaik dengan voltan litar terbuka (Voc) sebanyak 416.8 mV, ketumpatan arus litar terbuka (Jsc) sebanyak 0.169 mA/cm2 dan kecekapan penukaran (η) sebanyak 0.0232% di bawah iluminasi lampu xenon AM 1.5.
  
 
             
           Kata kunci: Hidroterma; nanokeping; nanorod; nanotiub; nanowayar
            
           
             
           ABSTRACT
            
           Nanostructured TiO2 with different sizes and shapes were
            synthesized through the hydrothermal method using TiO2 nanoparticles powder as
            the precursor. Hydrothermal system that is easy, inexpensive and free-templates
            at 180ºC temperature treatment, the influence of alkaline medium with the
            addition of NaOH and KOH on the size,
            morphology and photovoltaic properties of TiO2 nanostructures have been
            studied. Samples were characterized by transmission electron microscopy (TEM),
            energy dispersive X-ray analysis (EDAX) while the ability of the dye sensitized
            solar cells (DSSC)
            were measured using Potentiostat Gamry Series G-300. The study by using different alkaline agent (NaOH and KOH) clearly influence the morphology of TiO2 and the dye sensitized
            solar cells consisting of TiO2 nanorod structure
            shows the best capability with an open circuit voltage (Voc) of 416.8 mV, a short circuit current density (Jsc) of 0.169 mA/cm2 and a conversion efficiency
              (η) of 0.0232% under
                AM 1.5 xenon lamp illumination.
  
 
             
           Keywords: Hydrothermal; nanorods; nanosheets; nanotubes; nanowires
            
           RUJUKAN
            
           An’amt, M.N., Radiman, S.,
            Huang, N.M., Yarmo, M.A., Ariyanto,
            N.P., Lim, H.N. & Muhamad, M.R. 2010. Sol-gel hydrothermal synthesis of bismuth-TiO2 nanocubes for dye-sensitized solar cell. Ceramics
              International 36: 2215-2220.
  
           Attar, A.S., Ghamsari, M.S., Hajiesmaeilbaigi,
            F., Mirdamadi, S., Katagiri,
            K. & Koumoto, K. 2009. Sol-gel template synthesis
              and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Materials Chemistry and Physics 113:
              856-860.
  
 Bae, E. & Ohno, T. 2009. Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence
            of poly(vinyl pyrrolidone). Applied
              Catalysis B: Environmental 91: 634-639.
  
           Bwana, N.N. 2009. Comparison of the performances of
            dye-sensitized solar cells based on different TiO2 electrode nanostructures. Journal of Nanoparticle Research 11: 1917-1923.
  
           Centi, G. & Perathoner,
            S. 2007. Nano-architecture and reactivity of Titania catalytic materials. Quasi-1D
            nanostructures. Catalysis 20: 367-402.
  
           Chen, J.S. & Lou, X.W. 2009. Anatase TiO2 nanokeping: An
            ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry
              Communications 11(12): 2332-2335.
  
           Huang, E.Y., Hsu, Y.C., Chen, J.G., Suryanarayanan, V., Lee, K.M. & HO, K.C. 2006. The
            effects of hydrothermal temperature and thickness of TiO2 film on the performance
            of a dye-sensitized solar cell. Solar Energy Materials and solar cells
            90: 2391-2397
  
           Lee, K. M., Suryanarayanan, V. & Ho, K.C. 2007. A study on the electron
            transport properties of TiO2 electrodes in dye-sensitized
            solar cells. Solar Energy Materials and Solar Cells 91:
            1416-1420.
  
           Li, Q., Zhang, J., Liu, B., Li, M., Yu, S.,
            Wang, L., Li, Z., Liu, D., Hou, Y., Zou, Y., Zou, B., Cui, T. & Zou, G. 2008. Synthesis and
              electrochemical properties of TiO2-B@C core-shell nanoribbons. Crystal Growth and Design 8:
            1812-1814.
  
           Lu, C.H., Wu, W.H. &
            Kale, R.B. 2008. Microemulsion-mediated hydrothermal
              synthesis of photocatalytic TiO2 powders. Journal of Hazardous Materials 154: 649-654.
  
 Nag, M., Basak, P.
  & Manorama, S.V. 2007. Low-temperature
            hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time
            temperature tuning of morphology and photocatalytic activity. Materials Research Bulletin 42: 1691-1704.
  
           Oh, J.K., Lee, J.K., Kim,
            S.J. & Park, K.W. 2009. Synthesis of phase- and shape-controlled TiO2 nanoparticles
              via hydrothermal process. Journal of Industrial and Engineering
                Chemistry 15: 270-274.
  
 Pan, K., Zhang, Q., Wang,
            Q., Liu, Z., Wang, D., Li, J. & Bai, Y. 2007. The photoelectrochemical properties of dye sensitized solar cells made with TiO2 nanoribbons and nanoroads. Thin
              Solid Films 515: 4085-4091.
  
 Prado, A.G.S. & Costa, L.L. 2009. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. Journal of Hazardous Materials 169: 297-301.
            
           Prasad, K., Pinjari,
            D.V., Pandit, A.B. & Mhaske,
            S.T. 2010. Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel
            technique. Ultrasonics Sonochemistry 17: 409-415.
  
           Qamar, M., Yoon, C.R., Oh,
            H.J. & Kim, S.J. 2006. The effect of synthesis conditions on the
              formation of titanats nanotubes. Journal of
                the Korean Physical Society 49: 1493-1496.
  
 Qu,
            J., Gao, X.P., Li, G.R., Jiang, Q.W. & Yan, T.Y.
            2009. Structure transformation and photoelectrochemical properties of TiO2 nanomaterials calcined from titanat nanotubes. Journal
              of Physical Chemistry C 113: 3359-3363.
  
           Quintana, M., Edvision,
            T., Hugfeldt, A. & Boschloo,
            G. 2007. Comparison of dye - sensitized ZnO and TiO2 solar cells: Studies of
              charge transport and carrier lifetime. Journal of Physical Chemistry C 111:
              1035-1041.
  
 Rana, S., Rawat,
            J. & Misra, R.D.K. 2005. Anti-microbial active composite nanoparticles with magnetic
              core and photocatalytic shell: TiO2-NiFe2O4 biomaterial
              system. Acta Biomaterialia 1: 691-703.
  
 Sikhwivhilu, L.M., Sinha Ray, S. & Coville, N.J. 2009. Influence of bases on
            hydrothermal synthesis of titanat nanostructures.  Applied Physics A: Materials
              Science and Processing 94: 963-973.
  
           Suzuki, Y., Pavasupree,
            S., Yoshikawa, S. & Kawahata, R. 2007. Direct synthesis of an anatase-TiO2 nanofiber/nanoparticle composite powder from natural
              rutile. Physica Status Solidi (A)
                Applications and Materials 204: 1757-1761.
  
 Vasquez, J., Lozano, H., Lavayen, V., Lira-Cantu, M., Gomez-Romero, P., Ana, M.A.S., Benavente, E. & Gonzalez, G. 2009. High-Yield preparation of titanium
            dioxide nanostructures by hydrothermal conditions. Journal of Nanoscience and Nanotechnology 9: 1103-1107.
  
           Wang, B., Shi, Y. & Xue, D. 2007. Large
            aspect ratio titanat nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions. Journal of Solid State
              Chemistry 180: 1028-1037.
  
           Wang, D., Zhou, F., Liu, Y. & Liu,
            W. 2008. Synthesis and
              characterization of anatase TiO2 nanotubes
              with uniform diameter from titanium powder. Materials Letters 62:
              1819-1822.
  
 Wang, D., Yu, B., Zhou, F., Wang, C.
  & Liu, W. 2009. Synthesis
    and characterization of anatase TiO2,
    nanotubes and their use in dye-sensitized solar cells. Materials
      Chemistry and Physies113: 602-606.
  
 Yuan, Z.Y. & Su, B.L. 2004. Titanium
            oxide nanotubes, nanofibers and nanowires. Colloids
              and Surfaces A: Physicochemical and Engineering Aspects 241: 173-183.
  
           
             
           
             
           *Pengarang untuk surat-menyurat; email: anamt_1003@yahoo.com
            
           
            
            
   |