Sains Malaysiana 43(12)(2014): 1915–1925
Establishment of Physicochemical Measurements of Water
Polluting Substances via Flow Perturbation Gas Chromatography
(Menentusahkan Tentu-ukur Juzuk Fizika-kimia Bahan-bahan yang Mencemarkan Air Melalui Kromatografi Gas Aliran Terganggu)
H.H. MOHAMMAD*, SHARIFUDDIN MOHD ZAIN, RASHID ATTA KHAN
& KHALISANNI KHALID
Department of Chemistry, Faculty of Science, University of
Malaya
50603 Kuala Lumpur, Malaysia
Diserahkan: 6 Disember 2013/Diterima: 16 April 2014
ABSTRACT
Spillage of water polluting substances via industrial disaster may
cause pollution to our environment. Thus, reversed-flow gas chromatography (RF-GC)
technique, which applies flow perturbation gas chromatography, was used to
investigate the evaporation and estimate the diffusion coefficients of liquid
pollutants. Selected alcohols (99.9% purity) and its mixtures were used as
samples. The evaporating liquids (stationary phase) were carried out by carrier
gas-nitrogen, 99.9% purity (mobile phase) to the detector. The findings of this
work showed the physicochemical measurements may vary depending on the
composition of water and alcohol mixtures, temperature of the mixtures, as well
as the types of alcohol used. This study implies that there is a variation in
the results based on the concentration, types and temperature of the liquids
that may contribute in the references for future research in the area of
environmental pollution analysis.
Keywords: Alcohol mixtures; evaporation rates; liquid-gas
interphase; liquid pollutants; spillage; vapour pressure
ABSTRAK
Limpahan bahan-bahan pencemaran melalui bencana industri boleh menyebabkan pencemaran kepada alam sekitar kita. Oleh itu, teknik gas kromatografi aliran berbalik (KTAB) yang mengaplikasikan teknik kromatografi gas aliran terganggu digunakan bagi menentu ukur kadar penyejatan dan menganggar pekali resapan bahan-bahan pencemar. Alkohol terpilih (99.9% darjah kepekatan) dan campuran telah digunakan sebagai sampel. Cecair menyejat (fasa penyebaran) telah diangkut oleh gas pengangkut iaitu nitrogen, 99.9% ketulenan (fasa persampelan) ke pengesan. Keputusan kajian ini menunjukkan ukuran fizika-kimia mungkin berbeza bergantung kepada komposisi air dan alkohol di dalam campuran, suhu campuran dan jenis alkohol yang digunakan. Kajian ini menunjukkan bahawa terdapat perubahan keputusan berasaskan kepada kepekatan, jenis alkohol serta suhu campuran kajian dan ia boleh menyumbang kepada rujukan untuk kajian akan datang dalam bidang analisis pencemaran alam sekitar.
Kata kunci: Campuran alkohol; cecair pencemar; fasa cecair-gas; kadar penyejatan; tekanan wap; tumpahan
RUJUKAN
Agathonos, P. & Karaiskakis,
G. 1989a. Measurement of
activity coefficients, mass transfer coefficients and diffusion coefficients in
multicomponent liquid mixtures by reversed-flow gas chromatography. Journal
Of Chemical Society, Faraday Transaction 85(6): 1357-1363.
Agathonos, P. & Karaiskakis,
G. 1989b. Thermodynamic study
of polymer-solvent systems by reversed-flow gas chromatography. Journal
of Applied Polymer Science 37(8): 2237-2250.
Atta, K.R., Gavril, D. & Karaiskakis,
G. 2002. New methodology for the measurement of diffusion
coefficients of pure gases into gas mixtures. Instrumentation Science
& Technology 30(1): 67-78.
Beverley, K.J., Clint, J.H. &
Fletcher, P.D.I. 1999. Evaporation rates of
pure liquids measured using a gravimetric technique. Physical Chemistry
Chemical Physics 1: 149-153.
Birdi, K.S., Vu, D.T. & Winter, A. 1989. A study of the
evaporation rates of small water drops placed on a solid surface. Journal of
Physical Chemistry 93: 3702-3703.
Brown, I., Fock,
W. & Smith, F. 1969. The
thermodynamic properties of solutions of normal and branched alcohols in
benzene and n-hexane. The Journal of Chemical Thermodynamics 1(3):
273-291.
Cheng, J.J. & Timilsina, G.R.
2011. Status and barriers of advanced biofuel technologies: A review. Renewable
Energy 36(12): 3541-3549.
Davies, J.T. & Rideal, E.K.
1961. Interfacial Phenomena. New York: Academic Press.
Dilling, W.L. 1977. Interphase transfer processes. II. Evaporation
rates of chloro methanes, ethanes, ethylenes, propanes, and propylenes from
dilute aqueous solutions. Comparisons with theoretical
predictions. Environmental Science & Technology 11(4): 405-409.
Dilling, W.L., Tefertiller, N.B. & Kallos, G. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trychloroethylene,
tetrachloroethylene, and other chlorinated compounds in dilute aqueous
solutions. Environmental Science & Technology 9: 833-838.
Dimitrios, G., Georgake,
A. & Karaiskakis, G. 2012. Kinetic study of oxygen adsorption over nanosized Au/γ-Al2O3 supported catalysts under selective CO oxidation conditions. Molecules 17: 4878-4895.
Fuller, E.N., Schettler,
P.D. & Giddings, J.C. 1966. A new method for prediction of binary gas-phase diffusion
coefficients. Industrial & Engineering Chemistry 58: 18-27.
Gavril, D. 2010. Surface studies by reversed-flow inverse
gas chromatography: A review. Catalysis Today 154(1-2): 149- 159.
Gavril, D., Atta, K.R. & Karaiskakis, G. 2006. Study of the evaporation of pollutant liquids under the influence
of surfactants. AIChE 52(7):
2381-2390.
Gavril, D. & Karaiskakis, G.
1997. New gas chromatographic instrumentation for studying mass transfer
phenomena. Instrumentation Science & Technology 25(3): 217-234.
Goodman, W. Tipler, A. 2009.
Nitrogen and hydrogen as alternate carrier gas for GC/MS. International Gases & Instrumentation. Sept/Oct Issue.
Grushka, E. & Maynard, V.R. 1972. Measurements
of gaseous diffusion coefficients by gas chromatography. Journal of
Chemical Education 49(8): 565.
Hofmann, H.E. 1932. Evaporation rates of organic liquids. Industrial
and Engineering Chemistry 24(2): 135-140.
Hu, N., Wu, D., Cross, K., Burikov,
S., Dolenko, T., Patsaeva,
S. & Schaefer, D.W. 2010. Structurability: A
collective measure of the structural differences in vodkas. Journal of
Agricultural and Food Chemistry 58(12): 7394-7401.
Jozsef, G. 2009. Physical model for vaporization. Fluid Phase Equilibria 283: 89-92.
Karaiskakis, G., Agathonos,
P., Niotis, A. & Katsanos,
N.A. 1986. Measurement of mass
transfer coefficients for the evaporation of liquids by reversed-flow gas
chromatography. Journal of Chromatography A 364: 79-85.
Karaiskakis, G. & Gavril, D. 2004. Determination
of diffusion coefficients by gas chromatography. Journal of
Chromatography A 1037: 147-189.
Karaiskakis, G. & Katsanos, N.A. 1984. Rate coefficients for evaporation of pure liqulds and diffusion coefficients of vapors. J. Phys. Chem. 88:
3674-3678.
Karaiskakis, G., Katsanos,
N.A., Georgiadou, I. & Lycourghiotis,
A. 1982. Catalytic dehydration of alcohols
studied by reversed-flow gas chromatography. Journal of Chemical Society,
Faraday Transaction 1 78: 2017-2022.
Karaiskakis, G., Lycourghiotis,
A. & Katsanos, N.A. 1982. Kinetic study of the drying step of
supported catalysts by reversed-flow gas chromatography. Chromatographia 15(6): 351-354.
Katsanos, N.A. 1988. Flow Perturbation Gas Chromatography.
New York: Marcel Dekker Inc.
Katsanos, N.A., Agathonos, P. & Niotis, A. 1988. Mass transfer phenomena studied by
reversed-flow gas chromatography. 2. Mass transfer and partition coefficients
across gas-solid boundaries. The Journal of Physical Chemistry 92: 1645-
1650.
Katsanos, N.A., Karaiskakis, G. & Agathonos, P. 1985. Measurement of
activity coefficients by reversed-flow gas chromatography. Journal of
Chromatography A 349(2): 369-376.
Khalid, K., Khan, R.A. & Mohd.
Zain, S. 2012. Determination of diffusion coefficient and
activation energy of selected organic liquids using reversed-flow gas
chromatographic technique. Sains Malaysiana41(9): 1109-1116.
Khalid, K., Khan, R.A. & Mohd.
Zain, S. 2011. Determination of diffusion coefficients of selected long chain
hydrocarbons using reversed-flow gas chromatographic technique. E-Journal of
Chemistry 8(4): 1916-1924.
Lainioti, G.C., Kapolos, J., Koliadima, A. & Karaiskakis,
G. 2010. New separation methodologies for the distinction of
the growth phases of Saccharomyces cerevisiae cell cycle. Journal of
Chromatography A 1217(11): 1813-1820.
Mackay, D. & Leinonen, P.J.
1975. Rate of evaporation of low solubility contaminants from
water bodies to atmosphere. Environmental Science & Technology 9(13):
1178-1180.
Mackay, D. & Wolkolf, W.A.
1973. The rate of evaporation of environmental contaminants
from water bodies to the atmosphere. Environmental Science &
Technology 7: 611- 614.
Metaxa, E., Kolliopoulos, A., Agelakopoulou, T. & Roubani- Kalantzopoulou, F. 2009. The role of
surface heterogeneity and lateral interactions in the adsorption of volatile
organic compounds on rutile surface. Applied Surface Science 255(13-14):
6468-6478.
Mohammad, H.H., Mohd. Zain, S., Atta Rashid, K. & Khalid, K. 2013. Study the effect
of imposing surfactants toward the evaporation of low molecular weight alcohol. International Journal of Environmental Science and Development 4(4):
403-407.
O’Hare, K.D., Spedding, P.L. & Grimshaw, J.
1993. Evaporation of the ethanol and water components
comprising a binary liquid mixture. Developments in Chemical
Engineering and Mineral Processing 1(2-3): 118-128.
O’Hare, K.D. & Spedding, P.L.
1992. Evaporation of a binary liquid mixture. The
Chemical Engineering Journal 48(1): 1-9.
Peter, A. & De. P.J. 2006. Atkins’
Physical Chemistry. 8th ed. New York:
Oxford University Press.
Phillips, C.S.G., Hart-Davis, A.J.,
Saul, R.G.L. & Wormald, J. 1967. The direct study of heterogeneous
catalysis by gas-solid chromatography. Journal of Chromatographic Science 5(8): 424-428.
Rowan, S.M., Newton, M.I. & McHale,
G. 1995. Evaporation of microdroplets and the wetting of solid surfaces. Journal
of Physical Chemistry 99: 13268-13271.
Rusdi, M. & Moroi, Y. 2004. Study
on water evaporation through 1-alkanol monolayers by the thermogravimetry method. Journal of Colloid and Interface Science 272: 472-479.
States, R.J. & Gardner, C.S. 2000. Thermal
structure of the mesopause region (80-105 km) at 40°N
latitude. Part II: Diurnal variations. Journal of the Atmospheric
Sciences 57(1): 78-92.
*Pengarang untuk surat-menyurat; email: enal_fifi@yahoo.com
|