Sains Malaysiana 43(2)(2014):
289–293
Spin-on-Glass
(SOG) based Insulator of Stack Coupled Microcoils for
MEMS Sensors and Actuators Application
(Penebat Gegelung Mikro
Gandingan Tertimbun Berasaskan Spin-atas-Kaca (SOG)
untuk Aplikasi Pengesan dan Penggerak MEMS)
JUMRIL YUNAS*1, BURHANUDDIN YEOP
MAJLIS1, AZRUL
AZLAN
HAMZAH1
&
BADARIAH
BAIS2
1Institute of Microengineering and Nanoelectronics, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
2Faculty of Engineering and Built Environment, Universiti Kebangsaan
Malaysia
43600 Bangi, Selangor, Malaysia
Diserahkan: 7 Januari 2013/Diterima: 22 Julai 2013
ABSTRACT
A comprehensive study on the spin-on-glass (SOG) based thin film
insulating layer is presented. The SOG layer has been fabricated using simple MEMS technology
which can play an important role as insulating layer of stack coupled
microcoils. The fabrication process utilizes a simple, cost effective process
technique as well as CMOS compatible resulting to a reproducible
and good controlled process. It was observed that the spin speed and material
preparation prior to the process affect to the thickness and surface quality of
the layer. Through the annealing process at temperature 425oC in N2 atmospheric for 1 h, a
750 nm thin SOG layer with the surface roughness or the uniformity of about 1.5%
can be achieved. Furthermore, the basic characteristics of the spiral coils,
including the coupling characteristics and its parasitic capacitance were
discussed in wide range of operating frequency. The results from this
investigation showed a good prospect for the development of fully integrated
planar magnetic field coupler and generator for sensing and actuating purposes.
Keywords: Insulating layer; MEMS fabrication; sensor and actuator;
spin-on-glass; stack coupled microcoils
ABSTRAK
Satu kajian menyeluruh mengenai lapisan penebat filem nipis
berasaskan spin-atas-kaca (SOG) dibentangkan. Lapisan SOG telah difabrikasi
menggunakan teknologi mudah MEMS yang memainkan peranan penting sebagai
lapisan penebat gegelung mikro gandingan tertimbun. Proses fabrikasi tersebut
menggunakan teknik mudah, kos efektif serta serasi dengan CMOS dan menghasilkan
proses pengulangan dan kawalan yang baik. Dapat diperhatikan bahawa kelajuan
putaran dan penyediaan bahan sebelum proses memberi kesan kepada ketebalan dan
kualiti permukaan lapisan. Melalui proses penyepuhlindapan pada suhu 425oC
dalam atmosfera N2 selama 1 jam, lapisan SOG nipis setebal 750 nm
dengan kekasaran permukaan atau keseragaman yang dicapai adalah sekitar 1.5%.
Seterusnya, ciri-ciri asas gegelung lingkaran, termasuk ciri-ciri gandingan dan
kapasitan parasitik juga turut dibincangkan dalam berbagai julat frekuensi
operasi. Hasil kajian ini menunjukkan prospek yang baik bagi pembangunan
pengganding medan magnet dan penjana planar bersepadu untuk tujuan pengesanan
dan pergerakan.
Kata kunci: Fabrikasi MEMS;
gegelung mikro gandingan tertimbun; lapisan penebat; pengesan dan penggerak;
spin-atas-kaca
RUJUKAN
Arshak, K.I. & Almukhtar, B. 1999. Development of high
frequency coreless transformer using thick film polymer technology. Microelectronics
Journal 30(2): 119-125.
Aw, K.C. 2004. Reliability of MSQ spin-on glass as low-k interlayer
dielectric in VLSI device. Proc.of IEEE International Conference
on Semiconductor Electronics (ICSE), 7-9 Dec.
Brunet, M., O' Donnel, T., O' Brien, T., Mckloskey, J. &
O' Mathuna, C. 2001. Design study and fabrication techniques for
high power density microtransformers. Proc. of Applied Power
Electronics Conference and Exposition. 2001. APEC2001. Sixteenth
Anuall IEE. 2: 1189-1195.
Gaeta, I.S. & Wu, K.J. 1989. Improved EPROM moisture
performance using spin-on-glass (SOG) for passivation planarization. Reliability
Physics Symposium, 27th Annual Proceedings., International, Santa Clara,
US: 122 – 126.
Gel, M. 2002. Fabrication method for out of plane,
micro-coil by surface micromachining. Sensor and Actuators A: 97-98.
Hamzah, A.A., Majlis, B.Y. & Ahmad, I. 2007. HF etching
of sacrificial spin-on glass in straight and junctioned microchannels for MEMS
microstructure release. J. Electrochem. Soc. 154(8): D376-D382.
Lee, C.Y., Chen, Z.H., Chang, H.T., Wen, C.Y. & Cheng,
C.H. 2009. Design and fabrication of novel micro electromagnetic actuator. Microsyst.
Technol. 13(11-12): 1171-1177.
Mino, M., Yachi, T., Yanagisawa, K., Tago, A. & Tsukamoto,
K. 1995. Switching converter using thin film microtransformer with
monolithically integrated rectifier diodes. In Power Electronics
Specialist Conference, PESC ’95 Record, 26th Annual IEEE
(Volume 2).
Qin, S., Zhou, Y., Chan, C. & Chu, P.K. 1998. Fabrication
of low dielectric constant materials for ULSI multilevel interconnection
by plasma ion implantation. IEEE Electron Device Letter
19(11): 420-422.
Schmidt, V., Senz, S., Goesele, U. 2007. Influence of the
Si/SiO2 interface on the charge carrier density of Si nanowires.
Appl. Phys. A 86(2): 187-191.
Shen, M., Yamahata, C. & Gijs, M.A.M. 2008. A high-performance
compact electromagnetic actuator or a PMMA ball-valve micropump.
J. Micromech. Microeng. 18: 025031.
Tapia, J.A., Agustin, L. Pedro, H.M., García-Ramírez,
J., Martinez-Castillo, J., Figueras, E., Flores, A. & Manjarrez,
E. 2011. Sensing magnetic flux density of artificial neurons with
a MEMS device. Biomed. Microdevices 13: 303–313.
Yoon, J.B., Ahn, C.H. & Kim, C.K. 1999. High performance
three dimensional on-chip inductors fabricated by novel micromachining
technology for RF MMIC. IEEE MTT-S International Microwave Symposium
Digest 4: 1523-1526.
Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2009. Fabrication
and characterization of surface micromachined stacked transformer
on glass substrate. Microelectronics Engineering 86: 2020-2025.
*Corresponding author; email: jumrilyunas@ukm.my |