Sains Malaysiana 43(4)(2014):
543–550
Population Density and Antibiotic Resistant of Bacteria from
Bivalve
(Perna viridis and Anadara granosa)
(Kepadatan Populasi dan Kerintangan Antibiotik oleh Bakteria
daripada Bivalvia
(Perna viridis dan Anadara granosa))
ASMAT AHMAD1*, NUR DIANA MEHAT2, RAHIMI HAMID1& GIRES
USUP2
1School of Biosciences and Biotechnology,
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor, Malaysia
2School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Diserahkan: 19 Februari 2013/Diterima: 5 Ogos 2013
ABSTRACT
This study was carried out to know the
bacteria population density in the blood cockle (Anadara granosa) and green lipped mussel (Perna viridis), to analyse the bacteria resistance towards antibiotics and
antimicrobial activity of isolates against selected pathogen. Samples of blood
cockle and green lipped mussel were obtained from five areas in Kedah and
Negeri Sembilan. Bacterial population densities in mussels and cockles were 3 × 102 - 8 × 108 CFU/mL and 5 × 102 - 5 × 108 CFU/mL, respectively. A
total of 162 isolates were obtained, of which 131 isolates were from mussels
and 31 isolates were from cockles. Vibrio sp. was the most dominant genus in both
types of samples. Antibiotic testing of all isolates showed most
were resistant to Penicillin (10 U)
and most were sensitive to Ciprofloxacin (5 µg). Most isolates (160/162) showed resistance
to at least two antibiotics and 10 isolates were resistant to more than five
antibiotics. Multiple antibiotic resistance indices (MAR) were calculated based
on the antibiotic resistance results. Most isolates had a MAR index value of
0.2 which indicated the isolates were not contaminated with antibiotic residues.
The highest index value was 0.7. Fifteen out of 39 isolates which produced
beta-lactamase enzyme were tested for
antimicrobial activity against selected pathogen. Results indicated that
antimicrobial activity were varies among the isolates. Isolate SMII-Ip produced
antimicrobial activity against six out of the nine tested pathogen and none of
the isolates active against Pseudomonas
mirabilis.
Keywords: Anadara
granosa; antibiotic; antimicrobial; population density; Perna viridis
ABSTRAK
Kajian ini dijalankan bagi
mengetahui kepadatan populasi bakteria daripada kerang (Anadara granosa) serta kupang (Perna viridis), menganalisis kerintangan bakteria
terhadap antibiotik serta aktiviti antimikrob oleh pencilan terhadap patogen
pilihan. Sampel kerang dan kupang telah diperolehi dari lima kawasan perairan
Kedah dan Negeri Sembilan. Kepadatan populasi bakteria pada kupang adalah 3
× 102 - 8 × 108 CFU/mL dan kerang 5 × 102 - 5 × 108 CFU/mL Sebanyak 162
pencilan telah berjaya dipencilkan, dengan 131 pencilan adalah daripada kupang
dan 31 daripada kerang. Vibrio sp.
merupakan genus paling dominan daripada kedua-dua sampel. Ujian kerintangan
antibiotik terhadap semua pencilan menunjukkan kebanyakan isolat rintang
terhadap Penisilin (10 U) dan sensitif terhadap Ciprofloksasin (5 µg). Hampir semua pencilan (160/162) rintang
terhadap sekurangnya-kurangnya dua antibiotik dan 10 pencilan rintang terhadap
lebih daripada lima antibiotik. Kiraan indeks Antibiotik Pelbagai Rintang (MAR)
berdasarkan hasil ujian kerintangan antibiotik telah dijalankan. Kebanyakan
isolat mempunyai nilai indeks MAR 0.2 yang bermakna pencilan tidak terdedah
kepada pencemaran antibiotik. Nilai indeks MAR tertinggi adalah 0.7. Sebanyak
15 daripada 37 pencilan yang menghasilkan enzim beta-laktamase telah diuji
aktiviti antimikrob terhadap mikrob pathogen terpilih. Hasil menunjukkan
aktiviti antimikrob yang berbeza bagi pencilan yang berbeza. Pencilan SMII-Ip menghasilkan aktiviti antimikrob
terhadap enam daripada sembilan pathogen yang diuji dan tidak terdapat
pencilan yang aktif merencat Pseudomonas
mirabilis.
Kata kunci: Anadara
granosa; antibiotik; antimikrob;
kepadatan populasi; Perna viridis
RUJUKAN
Bansemir, A., Blume, M., Schröder, S. & Lindequist, U.
2006. Screening of cultivated seaweeds for antibacterial activity against fish
pathogenic bacteria. Aquaculture 252: 79-84.
Bauer, A.W., Kirby, W.M.M., Sherris, J.C. & Turck, M.
1966. Antibiotic susceptibility testing by a standardized single disc method. Am.
J. Clin. Pathol. 45: 493-496.
Braithwaite, R. & McEvoy, L. 2005. Marine biofouling on
fish farms and its remediation. Adv. Mar. Biol. 47: 215-252.
Brandi, G., Sisti, M., Giardini, F., Schiavano, G.F. &
Albano, A. 1999. Survival ability of cytotoxic strains of motile Aeromonas spp.
in different types of water. Lett. Appl. Microbiol. 29: 211-215.
Burkhardt, W. & Calci, K.R. 2000. Selective accumulation
may account for shellfish associated viral illness. Applied and
Environmental Microbiology 66(4): 1375-1378.
Cai, J., Li, J., Thompson, K.D., Li, C. & Han, H. 2007.
Isolation and characterization of pathogenic of Vibrio parahaemolyticus from
diseased post-larvae of abalone Haliotis diversicolor suprasexta. J.
Basic Microbiol. 47: 84-86.
Castro, D., Pujalte, M.J., Lopez-Cortes, L., Garay, E. &
Borrego, J.J. 2002. Vibrios isolated from the cultured manila clam (Ruditapes
philippinarum): Numerical taxonomy and antibacterial activities. Journal
of Applied Microbiology 93: 438-447.
Cavallo, R.A., Acquaviva, M.I. & Stabili, L. 2009.
Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from
a Mediterranean area (Northern Ionian Sea-Italy). Environ. Monit. Assess. 149(1-4):
465-475.
Chitanand, M.P., Kadam, T.A., Gyananath, G., Totewad, N.D.
& Balhal, D.K. 2010. Multiple antibiotic resistance indexing of coliforms
to identify high risk contamination sites in aquatic environment. Indian J.
Microbiol. 50: 216-220.
Defossez, J.M. &
Hawkins, A.J.S. 1997. Selective feeding in shellfish: Size dependent rejection
of large particles within pseudofaeces from Mytilus edulis, Ruditapes
philippinarum and Tapes decussatus. Marine Biology 129(1):
139-147.
Dunphy, B.J., Hall, J.A., Jeffs, A.G. & Wells, R.M.G.
2006. Selective particle feeding by the Chilean oyster, Ostrea chilensis:
Implications for nursery culture and broodstock conditioning. Aquaculture 261(2):
594-602.
Elhadi, N., Radu, S., Chen, C.H. & Nishibuchi, M. 2004.
Prevalence of potentially pathogenic Vibrio species in the seafood
marketed in Malaysia. Journal of Food Protection 67(7): 1469-1477.
Gueguen, Y., Herpin, A., Aumelas, A., Garnier, J., Fievet,
J., Escoubas, J.M., Bulet, P., Gonzalez, M., Lelong, C., Favrel, P. &
Bachère, E. 2006. Characterization of a defensing from the oyster Crassostrea
gigas: Recombinant production, folding, solution structure, antimicrobial
activities, and gene expression. J. Biol. Chem. 281: 313-323.
Heidelberg, J.F., Heidelberg, K.B. & Colwell, R.R. 2002.
Bacteria of the γ-subclass Proteobacteria associated with zooplankton in
Chesapeake Bay. Applied and Environmental Microbiology 68: 5498-5507.
Holmes, P., Niccolls, L.M. & Sartory, D.P. 1996. The
ecology of mesophilic Aeromonas in the aquatic environment. Applied
Microbiology 17: 58-60.
Huang, C.H., Renew, J.E., Smeby, K.L., Pinkerston, K. &
Sedlak, D.L. 2001. Assessment of potential antibiotic contaminants in water and
preliminary occurrence analysis. Water Resour. Update 120: 30-40.
Huss, H. 1997. Control of indigenous pathogenic bacteria in
seafood. Food Control 8: 91-98.
Kueh, C.S. & Chan, K.Y. 1985. Bacteria in bivalve
shellfish with special reference to the oyster. J. Appl. Bacteriol. 59(1):
41-47.
Kümmerer, K. 2009. Antibiotics in the aquatic environment: A
review-Part II. Chemosphere 75: 435-441.
Lee, J.K., Jung, D.W., Eom, S.Y., Oh, S.W., Kim, Y.J., Kwak,
H.S. & Kim, Y.H. 2008. Occurrence of Vibrio parahaemolyticus in
oysters from Korean retail outlets. Food Control 19: 990-994.
Lees, D. 2000. Viruses and bivalve shellfish. Int. J.
Food Microbiol 59: 81-116.
Lynn, M. & Solotorovsky, M. 1981. Chemotherapeutic
Agents for Bacterial Infections. Stroudsburg: Hutchison Ross Publishers.
Maktoob, A. & Ronald, H.T. 1997. Handbook of
Natural Products from Marine Ivertebrates. Phyllum mollusca
Part. 1. Harwood: Academic Publishers.
Martinez, J.L. 2003. Recent advances on antibiotic
resistance genes. In Recent Advances in
Marine Biotechnology: Molecular Genetics of Marine Organisms, edited by
Fingerman, N. New Hampshire: Science Publishers. pp. 13-32.
Mazel, D. & Davies, J. 1999. Antibiotic resistance in
microbes. Cellular and Molecular Life Sciences 56: 742-754.
Medeiros, A.A. 1997. Evolution and dissemination on
β-Lactamase accelerated by generations of β-lactam antibiotics. Clinical
Infection Disease 24: 519-545.
Nonaka, L., Isshiki, T. & Suzuki, S. 2000. The
occurrence of oxytetracycline-resistant bacteria in the fish intestine and the
seawater environment. Microbes. Environ. 15: 223-228.
Olafsen, J.A., Mikkelsen, H.V., Giaver, H.M. & Hansen,
G.H. 1993. Indigenous bacteria in hemolymph and tissues of marine bivalves at
low temperatures. Appl. Environ. Microbial. 59: 1848-1854.
Olicard, C., Renault, T., Torhy, C., Benmansour, A. &
Bourgougnon, N. 2005. Putative antiviral activity in hemolymph from adult
Pacific oysters, Crassostrea gigas. Antiviral Res. 66: 147-152.
Oliver, J.D. 1989. Foodborne Bacterial Pathogens. New
York: Marcel Dekker Inc.
Pinera-Pasquino, L. 2006. Patterns of antibiotic resistance
in bacteria isolated from marine turtles. Master Thesis. College of Charleston,
Charleston, South Carolina (Unpublished).
Prieur, D., Mevel, G., Nicolas, J.L., Plusquellec, A. &
Vigneulle, M. 1990. Interactions between bivalve molluscs and bacteria in the
marine environment. Oceanography and Marine Biology Annual Review 28:
277-352.
Projan, S.J. & Bradford, P.A. 2007. Late stage
antibacterial drugs in the clinical pipeline. Curr. Opin. Microbiol. 10:
441-446.
Pujalte, M.J., Ortigosa, M., Macian, M.C. & Garay, E.
1999. The annual cycle of aerobic and facultative anaerobic marine bacteria
associated with Mediterranean oysters and seawater. International
Microbiology 2: 259-266.
Roch, P., Yang, Y., Toubiana, M. & Aumelas, A. 2008. NMR
structure of mussel mytilin, and antiviral–antibacterial activities of
derived synthetic peptides. Dev. Comp. Immunol. 32: 227-238.
Ronald, J.A., Breena, M. & Melissa, M. 2002. Antibiotic
resistance of Gram negative bacteria in Rivers, United States. Emerging
Infectious Disease 8(7): 1-9.
Salyers, A.A., Gupta, A. & Wang, Y. 2004. Human
intestinal bacteria as reservoirs for antibiotic resistance genes. Trends
Microbiol. 12: 412-416.
Santos, O.C.S., Pontes, P.V.M.L., Santos, J.F.M., Muricy,
G., Giambiagi-deMarval, M. & Laport, M.S. 2010. Isolation, characterization
and phylogeny of sponge associated bacteria with antimicrobial activities from
Brazil. Research in Microbiology 161: 604-612.
Sarter, S., Nguyen, H.N.K., Hung, L.T., Lazard, J. &
Montent, D. 2007. Antibiotic resistance in Gram negative bacteria isolated from
farmed catfish. Food Control 18: 1391-1396.
Smith, J.J., Howington, J.P. & McFeters, G.A. 1993.
Plasmid maintenance and expression in Escherichia coli exposed to the
Antarctic marine environment. Antarctic Journal of the United States 28:
123-124.
Suantika, G., Dhert, P., Rombaut, G., Vandenberghe, J., De
Wolf, T. & Sorgeloos, P. 2001. The use of ozone in a high density
recirculation system for rotifers. Aquaculture 201: 35-49.
Thavasi, R., Apernavedi, S., Jayalakshimi, S. &
Balasubramanian, T. 2007. Plasmid mediated antibiotic resistance in marine
bacteria. Journal of Environmental Biology 28(3): 617-621.
Thompson, F.L., Iida, T. & Swings, J. 2004. Biodiversity
of Vibrios. Microbiology and Molecular Biology Reviews 68:
403-431.
Urakawa, H., Yoshida, T., Nishimura, M. & Ohwada, K.
2000. Characterization of depth-related population variation in microbial
communities of a coastal marine sediment using 16S rDNA-based approaches and
quinone profiling. Environ. Microbial. 2: 542-554.
Vandenberghe, J., Thompson, F.L., Gomez-Gil, B. &
Swings, J. 2003. Phenotypic diversity amongst Vibrio isolates from
marine aquaculture systems. Aquaculture 219: 9-20.
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern,
A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W.,
Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O.,
Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C.,
Roger, Y.H. & Smith, H.O. 2004.
Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:
66-74.
Veronica, A. 2005. Coastal Environmental Quality Initiative.
http://repositoories.cdlib. /ucmarine/ceqi/009. Assessed on 9 July 2005.
Wang, C., Dang, H. & Ding, Y. 2008. Incidence of diverse
integrons and β-lactamase genes in environmental Enterobacteriaceae isolates
from Jiaozhou Bay, China. World J. Microbiol. Biotechnol. 24: 2889-2896.
Wright, A.C., Hill, R.T., Johnson, J.A., Roghman, M.C.,
Colwell, R.R. & Morris, J.G. Jr. 1996. Distribution of Vibrio vulnificus in the Chesapeake Bay. Applied and Environmental Microbiology 62:
717-724.
*Pengarang
untuk surat-menyurat; email: drasmart@gmail.com
|