Sains Malaysiana 43(4)(2014):
567–573
A Hybrid Prognostic Model for Oral Cancer based on Clinicopathologic
and Genomic Markers
(Model Hibrid untuk Prognosis Kanser Mulut berdasarkan kepada Penanda
Klinikopathologi
dan Genomik)
SIOW-WEE CHANG12*, SAMEEM
ABDUL
KAREEM1, AMIR
FEISAL
MERICAN
ALJUNID
MERICAN2& ROSNAH
BINTI ZAIN34
1Department of Artificial Intelligence, Faculty of Computer
Science and Information Technology
University of Malaya, 50603 Kuala Lumpur, Malaysia
2Bioinformatics Division, Institute of Biological Science, Faculty
of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Oral Pathology and Oral Medicine and Periodontology,
Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur,
Malaysia
4Oral Cancer Research and Coordinating Centre (OCRCC), Faculty
of Dentistry, University of Malaya
50603 Kuala Lumpur, Malaysia
Diserahkan: 11 September 2012/Diterima: 22 Julai 2013
ABSTRACT
There are very few prognostic studies that combine both clinicopathologic
and genomic data. Most of the studies use only clinicopathologic factors
without taking into consideration the tumour biology and molecular information,
while some studies use genomic markers or microarray information only without
the clinicopathologic parameters. Thus, these studies may not be able to
prognoses a patient effectively. Previous studies have shown that prognosis
results are more accurate when using both clinicopathologic and genomic data.
The objectives of this research were to apply hybrid artificial intelligent
techniques in the prognosis of oral cancer based on the correlation of
clinicopathologic and genomic markers and to prove that the prognosis is better
with both markers. The proposed hybrid model consisting of two stages, where
stage one with Relief F-GA feature selection method to find an optimal
feature of subset and stage two with ANFIS classification to classify either the
patients alive or dead after certain years of diagnosis. The proposed
prognostic model was experimented on two groups of oral cancer dataset
collected locally here in Malaysia, Group 1 with clinicopathologic markers only
and Group 2 with both clinicopathologic and genomic markers. The results proved
that the proposed model with optimum features selected is more accurate with
the use of both clinicopathologic and genomic markers and outperformed the
other methods of artificial neural network, support vector machine and logistic
regression. This prognostic model is feasible to aid the clinicians in the
decision support stage and to identify the high risk markers to better predict
the survival rate for each oral cancer patient.
Keywords: ANFIS; clinicopathologic; genomic; oral cancer
prognosis; Relief F-GA
ABSTRAK
Terdapat kurang
kajian yang memaparkan penyelidikan prognostik yang menggabungkan
kedua-dua klinikopatologi dan genomik. Kebanyakan
kajian hanya menggunakan faktor klinikopatologi tanpa mengambil
kira biologi tumor dan maklumat molekul, manakala beberapa kajian
penyelidik yang lain menggunakan penanda genomik atau maklumat mikroarai
sahaja tanpa menggunakan parameter klinikopatologi. Maka,
kajian ini tidak dapat membuat prognosis pesakit dengan berkesan.
Kajian terdahulu telah menunjukkan bahawa keputusan
prognosis adalah lebih tepat dengan menggunakan kedua-dua klinikopatologi
dan genomik. Tujuan utama kajian ini adalah untuk mengaplikasikan hibrid teknik
kepintaran buatan dalam prognosis kanser mulut berdasarkan kepada
korelasi penanda klinikopatologi dan genomik dan untuk membuktikan
bahawa prognosis adalah lebih baik dengan kedua-dua penanda.
Model hibrid yang dicadangkan terdiri daripada dua peringkat, dengan
peringkat pertama terdiri daripada ReliefF-GA sebagai
kaedah pemilihan untuk mencari ciri optimum subset dan peringkat
dua dengan pengelasan ANFIS untuk mengelaskan
sama ada pesakit hidup atau mati selepas
beberapa tahun didiagnosis. Model ramalan prognostik yang dicadangkan
telah diaplikasikan ke atas dua golongan dataset kanser mulut yang
dikumpulkan di Malaysia, iaitu Kumpulan 1 dengan penanda klinikopatologi
sahaja dan Kumpulan 2 dengan gabungan kedua-dua penanda klinikopatologi
dan genomik. Keputusan yang didapati telah membuktikan bahawa model
yang dicadangkan dengan ciri optimum yang dipilih adalah lebih tepat
dengan kehadiran kedua-dua penanda klinikopatologi dan genomik dan
mengatasi kaedah lain seperti rangkaian
saraf buatan, mesin sokongan vektor dan regresi logistik. Model
prognostik ini boleh dilaksanakan untuk memberi bantuan kepada pakar
klinikal di peringkat membuat sokongan keputusan untuk mengenal
pasti penanda risiko yang tinggi supaya dapat meramalkan kadar
jangka hayat setiap pesakit kanser dengan lebih tepat.
Kata
kunci: ANFIS; genomik;
klinikopatologi; prognosis kanser mulut; Relief F-GA
RUJUKAN
Asakage, T., Yokose, T., Mukai, K., Tsugane, S.,
Tsubono, Y., Asai, M. & Ebihara, S. 1998. Tumor thickness predicts cervical
metastasis in patients with stage I/II carcinoma of the tongue. Cancer 82:
1443-1448.
Catto, J.W.F., Abbod, M.F., Linkens, D.A. &
Hamdy, F.C. 2006. Neuro-Fuzzy modeling: An accurate and interpretable method
for predicting bladder cancer progression. The Journal of Urology 175:
474-479.
Dom, R.M., Abdul-Kareem, S., Abidin, B.,
Jallaludin, R.L.R., Cheong, S.C. & Zain, R.B. 2008. Oral cancer prediction
model for Malaysian sample. Austral-Asian Journal of Cancer 7(4):
209-214.
Futschik, M.E., Sullivan, M., Reeve, A. & Kasabov, N. 2003.
Prediction of clinical behaviour and treatment for cancers. Applied
Bioinformatics 2(3 Suppl): S53-S58.
Gevaert,
O., Smet, F.D., Timmerman, D., Moreau, D. & Moor, B.D. 2006. Predicting the
prognosis of breast cancer by integrating clinical and microarray data with
Bayesian networks. Bioinformatics 22(14): e184-e190.
Giacomarra,
V., Tirelli, G., Papanikolla, L. & Bussani, R. 1999. Predictive factors of
nodal metastases in oral cavity and oropharynx carcinomas. Laryngoscope 109:
795-799.
Jefferies,
S. & Foulkes, W.D. 2001. Genetic mechanisms in squamous cell carcinoma of
the head and neck. Oral Oncology 37: 115-126.
Kawazu,
T., Kazuyuki, A., Yoshiura, K., Nakayama, E. & Kanda, S. 2003. Application
of neural networks to the prediction of lymph node metastasis in oral cancer. Oral
Radiology 2003(19): 137-142.
Kononenko,
I. 1994. Estimating Attributes: Analysis and Extension of RELIEF. Paper read at ECML-94 Proceedings of the European conference on machine learning on
Machine Learning.
Leite,
I.C.G. & Koifman, S. 1998. Survival analysis in a sample of oral cancer
patients at a reference hospital in Rio de Janeiro, Brazil. Oral Oncology 34(5):
347-352.
Li,
H., Li, D., Zhang, C. & Nie, S. 2007. An application of machine learning in
the criterion updating of diagnosis cancer. International Conference in
Neural Networks and Brain 2005(1): 187-190.
Mehrotra,
R. & Yadav, S. 2006. Oral squamous cell carcinoma: Etiology, pathogenesis
and prognostic value of genomic alterations. Indian Journal of Cancer 43(2):
60-66.
Morton,
R.P., Ferguson, C.M., Lambie, N.K. & Whitlock, R.M. 1994. Tumor thickness
in early tongue cancer. Archives of Otolaryngology-Head & Neck Surgery 120:
717-720.
Muzio,
L.L., Santarelli, A., Caltabiano, R., Rubini, C., Pieramici, T. &
Trevisiol, L. 2005. p63 overexpression associates with poor prognosis in
head and neck squamous cell carcinoma. Human Pathology 36: 187-194.
Oliveira,
L.R., Ribeiro-Silve, A., Costa, J.P.O., Simoes, A.L., Di Matteo, M.A.S. &
Zucoloto, S. 2008. Prognostic factors and survival analysis in a sample of oral
squamous cell carcinoma patients. Oral Surgery, Oral Medicine, Oral
Pathology, Oral Radiology, and Endodontology 106(5): 685-695.
Reichart,
P.A. 2001. Identification of risk groups for oral precancer and cancer and
preventive measures. Clinical Oral Investigations 5: 207-213.
Seker,
H., Odetayo, M.O., Petrovic, D. & Naguib, R.N.G. 2003. A fuzzy logic
based-method for prognostic decision making in breast and prostate cancers. IEEE
Transactions on Information Technology in Biomedicine 7(2): 114-122.
Siow-Wee,
C., Kareem, S.A., Kallarakkal, T.G., Merican, A.F., Abraham, M.T. & Zain,
R.B. 2011. Feature selection methods for optimizing clinicopathologic input
variables in oral cancer prognosis. Asia Pacific Journal of Cancer
Prevention 12(10): 2659-2664.
Sun,
Y., Goodison, S., Li, J., Liu, L. & Farmerie, W. 2007. Improved breast
cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23(1): 30-37.
Thurfjell,
N., Coates, P.J., Boldrup, L., Lindgren, B., Bäcklund, B., Uusitalo, T.,
Mahani, D., Dabelsteen, E., Dahlqvist, Å., Sjöström, B., Roos, G., Vojtesek,
B., Nenutil, R. & Nylander, K. 2005. Function and importance of p63 in
normal oral mucosa and squamous cell carcinoma of the head and neck. Current
Research in Head and Neck Cancer. Molecular Pathways, Novel Therapeutic
Targets, and Prognostic Factors, edited by Bier, H. Adv. Otorhinolaryngol.
Basel, Karger 62: 49-57.
Walker,
D.M., Boey, G. & McDonald, L.A. 2003. The pathology of oral cancer. Pathology 35(5): 376-383.
Williams,
J.K., Carlson, G.W., Cohen, C., Derose, P.B., Hunter, S. & Jurkiewicz, M.J.
1994. Tumor angiogenesis as a prognostic factor in oral cavity tumors. The
American Journal of Surgery 168: 373-380.
Zain,
R.B. & Ghazali, N. 2001. A review of epidemiological studies of oral cancer
and precancer in Malaysia. Annals of Dentistry University of Malaya 8:
50-56.
*Pengarang
untuk surat-menyurat; email: siowwee@um.edu.my
|