Sains Malaysiana 43(4)(2014):
575–582
Analisis Terma dan Prestasi Tetingkap Dwi Kaca dengan Modul
Fotovoltan Semi-lutsinar
(Thermal Analysis and Performance of Double Glazing Window with
Semi-transparent
Photovoltaic Module)
MOHD YUSOF HJ OTHMAN*, SALEEM H. ZAIDI, KAMARUZZAMAN SOPIAN
& MARHAMA JELITA
Institut Penyelidikan Tenaga Suria, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor
Malaysia
Diserahkan: 13 Februari 2012/Diterima:
5 Ogos 2013
ABSTRAK
Analisis terma dan prestasi modul fotovoltan semi-lutsinar yang
dipasang pada tetingkap dwi kaca (TDK) telah dikaji. Di dalam TDK terjadi pemindahan haba olakan yang
disebabkan oleh perbezaan suhu. Perisian COMSOL digunakan untuk
menyelesaikan model matematik dengan empat jenis gas yang berlainan
disimulasikan untuk mengisi ruang dalam TDK iaitu udara, argon, kripton dan xenon.
Ruang dalam TDK diubah antara 5 hingga 100 mm. Keadaan cuaca di Kuala Lumpur,
Malaysia telah digunakan. Modul fotovoltan yang digunakan
untuk kajian simulasi ialah jenis silikon amorfus (Si-a). Kajian ini mendapati penggunaan gas xenon dalam ruang TDK memberikan
prestasi maksimum dalam mengurangkan beban penyejukan. Ketebalan optimum
ruang TDK bergantung kepada jenis gas yang digunakan dan secara umumnya
berada dalam julat 10 hingga 20 mm.
Kata kunci: Analisis terma; modul semi lutsinar; pemindahan haba
perolakan; prestasi sistem; tingkap dwi kaca
ABSTRACT
Thermal analysis and performance of a semi-transparent photovoltaic
module installed with a double glazing window (TDK) has been studied. The
convective heat transfer occurs because of the temperature differences.
The software COMSOL
was used to solve the mathematical model and four
different gases namely air, argon krypton and xenon were used. The
gap's thickness varies from 5 to 100 mm. The climate conditions
in Kuala Lumpur, Malaysia was used. The photovoltaic module
used for the simulation studies are of the amorphous type (Si-a).
It was concluded that the use of xenon for filling up the gaps of
the windows gave maximum benefits for reducing cooling load. The
optimal gap thickness obtained were between
10 and 20 mm.
Keywords: Convective heat
transfer; double glazing window; semi-transparent module; system performance;
thermal analysis
RUJUKAN
Ayd?n, O. 2000. Determination of optimum air-layer
thickness in double-pane windows. Energy and Buildings 32:
303-308.
Ayd?n, O. 2006. Conjugate heat transfer analysis of double pane windows. Building
and Environment 41: 109-116.
Brandemuehl, M.J. & Beckman, W.A. 1980. Transmission of diffuse radiation through CPC and flat plate
collector glazings. Solar Energy 24: 511-513.
Brinkworth, B.J., Cross, B.M., Marshall, R.H. & Yang, H.
1997. Thermal regulation of photovoltaic cladding. Solar
Energy 61: 169-178.
COMSOL AB. 2009. COMSOL Multiphysics
Handbook.Hatfield, United Kingdom: Publisher
Curcija, D. & Goss, W.P. 1995. New correlations for
convective heat transfer coefficient on indoor fenestration
surfaces-compilation of more recent work. Proceedings of Thermal Performance
of the Exterior Envelopes of Buildings 6: 567-572.
ElSherbiny, S.M., Raithby, G.D. & Hollands, K.G. 1982.
Heat transfer by natural convection across vertical and inclined air layers. Journal
of Heat Transfer Transactions of the ASME 104: 96-102.
Fung, Y.Y. & Yang, H.X. 2008. Study on thermal
performance of semi-transparent building-integrated photovoltaic glazings. Energy
and Buildings 40: 341-350.
Han, J., Lu, L. & Yang, H. 2009. Thermal behavior of a novel type
see-through glazing system with integrated PV cells. Building and
Environment 44: 2129-2136.
Homer. 2012. Optimizing Clean Power Everywhere.
http://www. homerenergy.com. Diakses pada 31 Januari 2012.
Kakac, S. & Yener, Y. 1995. Convective
Heat Transfer. Florida: CRC Press Inc.
Korpela, S.A., Lee, Y. & Drummond,
J.E. 1982. Heat transfer window. Journal of
Heat Transfer 104: 539-544.
Lee, Y. & Korpela, S.A. 1983. Multicellular
convection in a vertical slot. Journal of Fluid Mechanics 126:
91-121.
Loveday, D.L. & Taki, A.H., 1996. Convective heat
transfer coefficients at a plane surface on a full-scale building facade.
Internatinal Journal of Heat and Mass Transfer 39: 1729- 1742.
Markvart, T. 2000. Solar Electricity. 2nd ed. New York: John Wiley & Sons.
Muneer, T. & Han, B. 1996. Simplified analysis for free convection
in enclosures - application to an industrial problem. Energy
Conversion Management 37: 1463-1467.
Myforecast. 2012. Weather for Your World. http://www. myforecast.com. Diakses pada 31 Januari 2012.
Novak, M.H. & Nowak, E.S. 1993. Natural
convection heat transfer in slender window cavities. Journal of Heat
Transfer 115: 476-479.
Oosthuizen, P.H. & Naylor, D. 1999. An
Introduction to Convection Heat Transfer Analysis. Singapore:
McGraw– Hill.
The National Institute of Standards and
Technology. 2011. Published by the U.S. Secretary of Commerce on behalf of
the United States of America. http://webbook.nist.gov. Diakses pada 31 Januari 2012.
Weir, G. & Muneer, T. 1998. Energy and environmental impact analysis
of double-glazed windows. Energy Conversion Management 39:
243-256.
World Meteorological Organization. 2012. World Weather Information Service.
http://worldweather.wmo.int. Diakses pada 31 Januari 2012.
Yang, H.X., Burnett, J. & Ji, J.
2000. Simple approach to
cooling load component calculation through PV walls. Energy and
Buildings 31: 285-290.
Yang, H.X., Burnett, J. & You, S. 1997. Photovoltaics applications in Hong Kong buildings. Asia
Engineer.
Yin, S.H., Wung, T.Y. & Chen, K.
1978. Natural convection in an air layer
enclosed within rectangular cavities. International Journal of Heat and Mass
Transfer 21: 307-315.
Zondag, H.A., de Vries, D.W., van Helden, W.G.J., van
Zolingen, R.J.C. & van Steenhoven, A.A. 2003. The yield of different
combined PV-thermal collector designs. Solar Energy 74: 253-269.
*Pengarang untuk surat-menyurat; e-mail: myho@ukm.my
|