Sains
Malaysiana 43(4)(2014): 583–594
Electrical Characteristics and Modeling of a Filamentary Dielectric
Barrier
Discharge
in Atmospheric Air
(Ciri Elektrik dan Model Suatu Nyahcas Dielektrik Berpenghadang dalam
Udara Atmosfera)
W.H. TAY, S.L. YAP
& C.S. WONG*
Plasma
Technology Research Centre, Physics Department, University of Malaya
50603
Kuala Lumpur, Malaysia
Diserahkan:
13 Disember 2012/Diterima: 15 Julai 2013
ABSTRACT
The electrical characteristics of a filamentary dielectric barrier
discharge (DBD) are studied experimentally and numerically. The DBD system
which has parallel plate electrodes geometry is powered by a 50 Hz power supply
and operated at atmospheric air. A dynamic electric circuit model considering
the discharge region and the non-discharge region being connected by a surface
resistance is proposed. Simulation using this model is shown to fit the
experimentally measured QV diagram satisfactorily. The effects
of the air gap distance and the dielectric surface on the discharge behavior
are then investigated. It is found that the surface resistivity of the
dielectric is one of the important parameters governing the discharge behavior.
Keywords: Dielectric barrier discharge; electrical
characteristics; electrical modeling; filamentary discharge
ABSTRAK
Ciri nyahcas dielektrik berpenghadang (DBD)
telah dikaji secara eksperimen dan berangka. Sistem DBD yang mengandungi
dua elektrod plat yang selari dikuasakan dengan bekalan kuasa 50
Hz dan beroperasi dalam udara atmosfera. Satu model elektrik yang mengambil kira rantau
tidak bernyahcas dan rantau bernyahcas telah dicadangkan. Dalam
model elektrik ini, rantau tidak bernyahcas dan rantau bernyahcas
disambung dengan satu rintangan permukaan. Keputusan simulasi berjaya
menyamai keputusan Lissajous QV
yang diperoleh daripada eksperimen. Kesan jarak jurang
ruang dan rintangan permukaan dielektrik dalam DBD juga dikaji dan didapati bahawa rintangan
permukaan dielektrik adalah satu parameter yang penting untuk mengawal
sifat nyahcas.
Kata kunci: Ciri elektrik; nyahcas dielektrik
berpenghadang; nyahcas filamen; model elektrik
RUJUKAN
Bartnikas, R., Radu, I. & Wertheimer, M.R. 2007.
Dielectric electrode surface effects on atmospheric pressure glow discharges in
helium. IEEE Transactions on Plasma Science 35: 1437-1447.
Bhosle, S., Zissis, G., Damelincourt, J.J., Capdevila, A.,
Gupta, K., Dawson, F.P. & Tarasenko, V.F. 2005. Electrical modeling of a
homogeneous dielectric barrier discharge (DBD). Conference Record of the
2005 IEEE Industry Applications Conference 4: 2315-2319.
Bhosle, S., Zissis, G., Damelincourt, J.J. & Dawson, FP.
2004. Calculation of the impedance of an axisymetric DBD lamp for power supply
design purposes. Conference Record of the 2004 IEEE Industry Applications
Conference 3: 1667-1670.
Brandenburg, R., Navratil, Z., Jansky, J., St’ahel, P.,
Trunec, D. & Wagner, H.E. 2009. The transition between different modes of
barrier discharges at atmospheric pressure. Journal of Physics D-Applied
Physics 42(8): 085208.
Chirokov, A., Gutsol, A., Fridman, A., Sieber, K.D., Grace,
J.M. & Robinson, K.S. 2006. A study of two-dimensional microdischarge
pattern formation in dielectric barrier discharges. Plasma Chemistry and
Plasma Processing 26: 127-135.
Falkenstein, Z. & Coogan, J.J. 1997. Microdischarge
behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal
of Physics D-Applied Physics 30: 817-825.
Flores-Fuentes, A., Pena-Eguiluz, R., Lopez-Callejas, R.,
Mercado-Cabrera, A., Valencia-Alvarado, R., Barocio- Delgado, S. & de la
Piedad-Beneitez, A. 2009. Electrical model of an atmospheric pressure
dielectric barrier discharge cell. IEEE Transactions on Plasma Science 37(1):
128-134.
Gherardi, N. & Massines, F. 2001. Mechanisms controlling
the transition from glow silent discharge to streamer discharge in nitrogen. IEEE
Transactions on Plasma Science 29: 536-544.
Hashim, S.A., Wong, C.S., Abas, M.R. & Dahlan, K.Z.
2007. Feasibility study on the removal of nitric oxide (NO) in gas phase using
dielectric barrier discharge reactor. Malaysia Journal of Science 26:
111-116.
Hashim, S.A., Wong, C.S., Abas, M.R. & Dahlan, K.Z.
2010. Discharge based processing systems for nitric oxide remediation. Sains
Malaysiana 39: 981-987.
Kamchouchi, H.E. & Zaky, A.A. 1975. A direct method for
the calculation of the edge capacitance of thick electrodes. Journal of
Physics D-Applied Physics 8(2): 1365-1371.
Kim, G.H., Jeong, S.Y., Kwon, H.C. & Song, S.H. 2006.
Capacitance between an atmospheric discharge plasma and the dielectric
electrode in the parallel cell reactor. Journal of the Korean Physical
Society 49: 1307-1311.
Kogelschatz, U., Eliasson, B. & Egli, W. 1997.
Dielectric-barrier discharges. Principle and applications. Journal De
Physique Iv 7: 47-66.
Kogelschatz, U., Eliasson, B. & Egli, W. 1999. From
ozone generators to flat television screens: History and future potential of
dielectric-barrier discharges. Pure and Applied Chemistry 71: 1819-1828.
Kogelschatz, U. 2002. Filamentary, patterned, and diffuse
barrier discharges. IEEE Transactions on Plasma Science 30: 1400-1408.
Kogelschatz, U. 2003. Dielectric-barrier discharges: Their
history, discharge physics, and industrial applications. Plasma Chemistry
and Plasma Processing 23: 1-46.
Kozlov, K.V., Wagner, H.E., Brandenburg, R. & Michel, P.
2001. Spatio-temporally resolved spectroscopic diagnostics of the barrier
discharge in air at atmospheric pressure. Journal of Physics D-Applied
Physics 34: 3164-3176.
Li, M., Li, C.R., Zhan, H.M., Xu, J.B. & Wang, X.X.
2008. Effect of surface charge trapping on dielectric barrier discharge. Applied
Physics Letters 92: 031503.
Liu, S.H. & Neiger, M. 2003. Electrical modelling of
homogeneous dielectric barrier discharges under an arbitrary excitation voltage. Journal of Physics D-Applied Physics 36: 3144-3150.
Manley, T.C. 1943. The electric characteristics of the
ozonator discharge. Trans. Electrochem. Soc. 84: 83-96.
Naude, N., Cambronne, J.P., Gherardi, N. & Massines, F.
2005. Electrical model and analysis of the transition from an atmospheric
pressure Townsend discharge to a filamentary discharge. Journal of Physics
D-Applied Physics 38: 530-538.
Pal, U.N., Sharma, A.K., Soni, J.S., Kr, S., Khatun, H.,
Kumar, M., Meena, B.L., Tyagi, M.S., Lee, B.J., Iberler, M., Jacoby, J. &
Frank, K. 2009. Electrical modelling approach for discharge analysis of a
coaxial DBD tube filled with argon. Journal of Physics D-Applied Physics 42(4):
045213.
Ramasamy, R.K., Rahman, N.A. & Wong, C.S. 2001. Effect
of temperature on the ozonation of textile waste effluent. Color Technol. 117:
95-97.
Somerville, I. & Vidaud, P. 1985. Surface spreading of
charge due to ohmic conduction. Proceedings of the Royal Society of London
Series a-Mathematical Physical and Engineering Sciences 399: 277-293.
Subedi, D.P., Tyata, R.B., Khadgi, A. & Wong, C.S. 2012.
Physiochemical and microbiological analysis of drinking water treated by using
ozone. Sains Malaysiana 41: 739-745.
Valdivia-Barrientos, R., Pacheco-Sotelo, J.,
Pacheco-Pacheco, M., Benitez-Read, J.S. & Lopez-Callejas, R. 2006. Analysis
and electrical modelling of a cylindrical DBD configuration at different
operating frequencies. Plasma Sources Science & Technology 15:
237-245.
Wagner, H.E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A.,
Michel, P. & Behnke, J.F. 2003. The barrier discharge: Basic properties and
applications to surface treatment. Vacuum 71: 417-436.
*Pengarang
untuk surat-menyurat; email: cswong@um.edu.my
|