Sains Malaysiana 44(10)(2015): 1423–1430
Estimation of Basic
Reproduction Number for Dengue Fever in Lahore, Pakistan
(Penganggaran Asas Nombor Pembiakan R0 untuk Demam Denggi di Lahore, Pakistan)
NOOR BADSHAH
*, HASSAN SHAH & MUHAMMAD JAVID
Department of Basic
Sciences, University of Engineering of Technology Peshawar, Pakistan
Diserahkan: 8 September
2013/Diterima: 15 Jun 2015
ABSTRACT
Dengue fever is a vector-borne viral
disease which is now endemic in more than 100 countries affecting more than 2.5
billion people worldwide. In recent years, dengue fever has become a major
threat to public health in Pakistan. In this paper, we derived an explicit
formula for reproduction number R0 (the most important
epidemiological parameter) and then used real data of dengue fever cases of
different hospitals of Lahore (Pakistan) on R0.
Conditions for local stability of equilibrium points are discussed. In the end,
simulations are carried out for different situations.
Keywords: Endemic;
equilibrium points; simulations; SIR model; stability
ABSTRAK
Demam denggi
adalah penyakit bawaan vektor virus yang kini berleluasa di lebih 100 buah
negara yang melibatkan lebih daripada 2.5 bilion penduduk di seluruh dunia. Sejak kebelakangan ini, demam denggi telah menjadi satu ancaman
utama kepada kesihatan awam di Pakistan. Dalam kertas
ini, kami menerbitkan formula yang jelas untuk nombor pembiakan R0 (parameter
epidemiologi yang paling penting) dan kemudian menggunakan data sebenar kes
demam denggi daripada hospital berbeza di Lahore (Pakistan) untuk R0. Syarat untuk titik keseimbangan kestabilan tempatan
dibincangkan. Akhirnya, simulasi dijalankan untuk
situasi yang berbeza.
Kata
kunci: Endemik; kestabilan; Model SIR; simulasi;
titik keseimbangan
RUJUKAN
Akram,
D.S., Igarashi, A. & Takasu, T. 1998. Dengue virus infection
among children with undifferentiated fever in Karachi. Indian J.
Pediatr. 65: 735-740.
Chan,
Y.C., Salahuddin, N.I., Khan, J., Tan, H.C. & Seah, C.L. 1995. Dengue
haemorrhagic fever outbreak in Karachi, Pakistan. Trans R. Soc. Trop.
Med. Hyg. 89: 619-620.
Degallier,
N., Favier, C., Boulanger, J.P., Menkes, C.E. & Oliveira, C. 2005. Unenouvelle methode
d’estimation du taux de reproduction des maladies (R0): application a‘ l’etude des epidemies de Dengue dans
le District Federal, Bresil. Environnement, Risques et Sante 4: 131-135.
Derouich,
M., Boutayeb, A. & Twizell, E.H. 2003. A model of dengue
fever. Biomedical Engineering Online 2(1): 4.
Favier,
C., Degallier, N. & Rosa-Freitas, M.G. 2006. Early determination of
the reproductive number for vector-borne diseases: The case of dengue in
Brazil. Tropical Medicine and International Health 3: 332-340.
Focks, D.A., Haile,
D.G., Daniels, E. & Mount, G.A. 1993. Dynamic life table model for Aedes
aegypti (Diptera: Culicidae): Analysis of the literature and model
development. Journal of Medical Entomology 30: 1003-1017.
Hethcote, H.W. 2000. The mathematics of infectious diseases. SIAM Review 42(4):
599-653.
Khan, E., Siddiqui, J.,
Shakoor, S., Mehraj, V., Jamil, B. & Hasan, R. 2007. Dengue outbreak in
Karachi, Pakistan, experience at a tertiary care center. Trans R. Soc. Trop.
Med. Hyg. 101: 1114-1119.
Mcbride, W.J. &
Bielefeldt-Ohmann, H. 2000. Dengue viral infections: Pathogenesis and
epidemiology. Microbes and Infection 2: 1041-1050.
Paul,
R.E., Patel, A.Y., Mirza, S., Fisher-Hoch, S.P. & Luby, S.P. 1998. Expansion
of epidemic dengue viral infections to Pakistan. Int. J. Infect. Dis. 2: 197-201.
Pongsumpun, P. 2008. Mathematical model of dengue disease with the incubation period of
virus. World Academy of Science, Engineering and
Technology. p. 44.
Robert, M. 1997. Stability and Complexity in Model Ecosystems. New
Jersey: Princeton University Press.
World
Health Organization. 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment,
Prevention and Control. Geneva.
*Pengarang untuk surat-menyurat; email: noor2knoor@gmail.com
|