Sains Malaysiana 44(11)(2015): 1541–1550
Study
on the Preparation of Cellulose Nanofibre (CNF) from Kenaf Bast Fibre for
Enzyme Immobilization Application
(Kajian terhadap Penyediaan Nano-serabut Selulosa (CNF)
daripada Serabut Kulit Kenaf untuk Aplikasi Pemegunan Enzim)
SAFWAN SULAIMAN1, MOHD NORIZNAN MOKHTAR1*, MOHD NAZLI NAIM1, AZHARI SAMSU BAHARUDDIN1, MOHAMAD AMRAN MOHD SALLEH2 & ALAWI SULAIMAN3
1Department
of Process and Food Engineering, Faculty of Engineering, Universiti Putra
Malaysia
43400
Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Chemical and Environmental Engineering, Faculty of Engineering, Universiti
Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Faculty
of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor Darul Ehsan, Malaysia
Diserahkan:
28 Mac 2015/Diterima: 12 Jun 2015
ABSTRACT
This paper discussed on the preparation of natural CNF from
kenaf bast fibre for the application as a support structure in enzyme
immobilization. The treatments involved for this preparation were
delignification, bleaching and high-intensity ultra-sonication process to
obtain nanofibre with high cellulose content and less than 100 nm diameter.
Chemical composition analysis showed the influence of each process treatment on
cellulose content of raw bast fibre, bleached pulp fibre and CNF(63.67,
81.12 and 91.97%, respectively). By increasing the cellulose content and
decreasing the size of cellulose fibre, it resulted in a greater number of
–OH functional group on its surface that plays as important role in
enzyme immobilization. FTIR spectroscopy confirms that the
removal of lignin and hemicellulose from the fibre after the treatments, as
well as its interaction with coupling agents and CGTase
enzyme. About 62.10% of enzyme loading and 45.62% of its activity yield were
obtained after immobilization. Enzymatic reaction of immobilized CGTase
on CNF indicates about more than 60% relative production
yield of α-CD was achieved and its reusability
was able to retain about 67.0% from its initial activity after 8 cycles of
reaction. Therefore, the CNF is a good potential as a support
for enzyme immobilization.
Keywords: Cellulose nanofibre (CNF);
covalent immobilization; cyclodextrin glucanotransferase (CGTase);
kenaf
ABSTRAK
Kertas ini membincangkan penyediaan CNF
semula jadi daripada serabut kulit kenaf untuk aplikasi
sebagai struktur sokongan dalam pemegunan enzim. Rawatan yang terlibat dalam penyediaan ini ialah delignasi, pelunturan
dan proses ultrasonikasi berkeamatan tinggi untuk memperoleh nano-serabut dengan kandungan selulosa yang tinggi dan berdiameter kurang daripada
100 nm. Analisis komposisi kimia menunjukkan kesan akibat daripada
proses rawatan terhadap kandungan selulosa pada serabut kulit mentah, serabut pulpa terluntur dan CNF (masing-masing adalah 63.67, 81.12
dan 91.97%). Dengan peningkatan kandungan selulosa dan pengurangan
saiz serabut selulosa, ia menghasilkan lebih banyak
kumpulan berfungsi –OH pada permukaannya yang memainkan peranan
penting dalam pemegunan enzim. FTIR spektroskopi mengesahkan penyingkiran
lignin dan hemiselulosa daripada serabut selepas proses rawatan tersebut serta interaksinya dengan agen perhubungan
dan enzim CGTase.
Sebanyak 62.10% muatan enzim dan 45.62% hasilan
aktiviti diperoleh selepas pemegunan. Tindak balas enzim
CGTase
terpegun pada CNF menunjukkan lebih daripada 60% hasil pengeluaran relatif
α-CD dicapai dan penggunaan semulanya dapat mengekalkan sebanyak
67.0% daripada aktiviti awal selepas 8 kitaran tindak balas. Oleh itu, CNF berpotensi baik sebagai penyokong
untuk pemegunan enzim.
Kata kunci: Kenaf; nano-serabut selulosa (CNF); pemegunan kovalen;
siklodekrin glukanotransferase (CGTase)
RUJUKAN
Abdel-Naby, M.A. 1999. Immobilization of Paenibacillus
macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the
immobilized enzyme. Process Biochem. 34(4): 399-405.
Abdel-Naby, M.A., Ismail, A.M.S.,
Abdel-Fattah, A.M. & Abdel-Fattah, A.F. 1999. Preparation and some properties of immobilized Penicillium
funiculosum 258 dextranase. Process Biochem. 34(4): 391-398.
Abe, K. & Yano, H. 2009. Comparison of the
characteristics of cellulose microfibril aggregates of wood, rice straw and
potato tuber. Cellulose 16(6): 1017-1023.
Brinchi, L., Cotana, F., Fortunati, E.
& Kenny, J.M. 2013. Production of
nanocrystalline cellulose from lignocellulosic biomass: Technology and
applications. Carbohydr. Polym. 94(1): 154-169.
Cao, L. 2006. Covalent enzyme
immobilization. Carrier-bound Immobilized Enzymes. KGaA:
Wiley-VCH Verlag GmbH & Co. pp. 169-316.
Chen, W., Yu, H. & Liu, Y. 2011a. Preparation of millimeter-long cellulose
I nanofibers with diameters of 30-80nm from bamboo fibers. Carbohyd.
Polym. 86(2): 453-461.
Chen, W., Yu, H., Liu, Y., Chen, P.,
Zhang, M. & Hai, Y. 2011b. Individualization of cellulose nanofibers from wood using high-intensity
ultrasonication combined with chemical pretreatments. Carbohyd. Polym. 83(4):
1804-1811.
Ferrarotti, S.A., Bolivar, J.M., Mateo,
C., Wilson, L., Guisan, J.M. & Fernandez-Lafuente, R. 2006. Immobilization and stabilization of a cyclodextrin
glycosyltransferase by covalent attachment on highly activated Glyoxyl-Agarose
supports. Biotechnol. Progr. 22(4): 1140-1145.
Ivanova, V. 2010. Immobilization of cyclodextrin
glucanotransferase from Paenibacillus macerans ATCC 8244 on magnetic
carriers and production of cyclodextrins. Biotechnol. Biotec. Eq. 24(supp
1): 516-528.
Joonobi, M., Harun, J., Tahir, P.M.,
Zaini, L.H., Saiful Azry, S. & Makinejad, M.D. 2010. Characteristics of nanofibres extracted from kenaf core. BioResources 5(4): 2556-2566.
Jonoobi, M., Niska, K.O., Harun, J.,
Misra, M., Shakeri, A., Misra, M. & Oksman, K. 2009. Chemical composition, crystallinity, and
thermal degradation of bleached and unbleached kenaf bast (Hibiscus
cannabinus) pulp and nanofibers. BioResources 4(2): 626-639.
Karimi, S., Tahir, P.M., Karimi, A.,
Dufresne, A. & Abdulkhani, A. 2014. Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to
nano. Carbohyd. Polym. 101(0): 878-885.
Khalil, H.P.S.A., Ismail, H., Rozman, H.D. & Ahmad, M.N.
2001. The effect of acetylation on interfacial shear strength
between plant fibres and various matrices. Eur. Polym. J. 37(5):
1037-1045.
Kim, J., Grate, J.W. & Wang, P. 2006. Nanostructures
for enzyme stabilization. Chem. Eng. Sci. 61(3): 1017-1026.
Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J.P.,
Smith, A., Guinebretiere, R., Gloaguen, V. & Krausz, P. 2008. Influence of
various chemical treatments on the composition and structure of hemp fibres. Compos.
Part A-Appl. S. 39(3): 514-522.
Li, Y., Mai, Y-W. & Ye, L. 2000. Sisal fibre and its composites: A review of recent developments. Compos.
Sci. Technol. 60(11): 2037-2055.
Martı́n, M.T., Plou, F.J., Alcalde, M. &
Ballesteros, A. 2003. Immobilization on Eupergit C of
cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized
biocatalyst. J. Mol. Catal. B: Enzym. 21(4-6): 299-308.
Matte, C.R., Nunes, M.R., Benvenutti, E.V., Schöffer,
J.D.N., Ayub, M.A.Z. & Hertz, P.F. 2012. Characterization of cyclodextrin
glycosyltransferase immobilized on silica microspheres via
aminopropyltrimethoxysilane as a “spacer arm.” J. Mol. Catal. B: Enzym. 78(0):
51-56.
Mubarak, N.M., Wong, J.R., Tan, K.W., Sahu, J.N., Abdullah,
E.C., Jayakumar, N.S. & Ganesan, P. 2014. Immobilization of cellulase
enzyme on functionalized multiwall carbon nanotubes. J. Mol. Catal. B:
Enzym. 107: 124-131.
Nacos, M.K., Katapodis, P., Pappas, C.,
Daferera, D., Tarantilis, P.A., Christakopoulos, P. & Polissiou, M. 2006. Kenaf xylan - A source of biologically
active acidic oligosaccharides. Carbohyd. Polym. 66(1): 126-134.
Ortega, N., Perez-Mateos, M., Pilar,
M.C. & Busto, M.D. 2009. Neutrase immobilization on alginate-glutaraldehyde beads by
covalent attachment. J. Agric. Food. Chem. 57(1): 109-115.
Prousoontorn, M.H. & Pantatan, S. 2007. Production of
2-O-α-glucopyranosyl l-ascorbic acid from ascorbic acid and
β-cyclodextrin using immobilized cyclodextrin glycosyltransferase. J.
Inclusion Phenom. Macrocyclic Chem. 57(1-4): 39-46.
Redeker, E.S., Ta, D.T., Cortens, D., Billen, B., Guedens,
W. & Adriaensens, P. 2013. Protein engineering for directed immobilization. Bioconjugate Chem. 24(11): 1761-1777.
Schöffer, J.D.N., Klein, M.P., Rodrigues, R.C. & Hertz,
P.F. 2013. Continuous production of β-cyclodextrin from
starch by highly stable cyclodextrin glycosyltransferase immobilized on
chitosan. Carbohydr. Polym. 98(2): 1311-1316.
Shahrazi, S., Saallah, S., Mokhtar, M.N., Baharuddin, A.S.
& Yunos, K.F.M. 2013. Dynamic mathematical modelling of
reaction kinetics for cyclodextrins production from different starch sources
using Bacillus macerans cyclodextrin glucanotransferase. Am. J.
Biochem. Biotechnol. 9(2): 195- 205.
Silva,
M.C., Lopes, O.R., Colodette, J.L., Porto, A.O., Rieumont, J., Chaussy, D.,
Belgacem, M.N. & Silva, G.G. 2008. Characterization of
three non-product materials from a bleached eucalyptus kraft pulp mill, in view
of valorising them as a source of cellulose fibres. Ind.
Crop Prod. 27(3): 288-295.
Siró,
I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite
materials: A review. Cellulose 17(3): 459-494.
Sulaiman, S., Mokhtar, M.N., Naim, M.N., Baharuddin, A.S.
& Sulaiman, A. 2014. A review: Potential usage of cellulose
nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl.
Biochem. Biotechnol. 175(4): 1817-1842.
Svensson,
D. & Adlercreutz, P. 2011. Immobilisation of CGTase for continuous
production of long-carbohydrate-chain alkyl glycosides: Control of product
distribution by flow rate adjustment. J. Mol. Catal. B: Enzym. 69(3-4):
147-153.
van Soest, P.J., Robertson, J.B. &
Lewis, B.A. 1991. Methods for dietary fiber, neutral
detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10): 3583-3597.
Wang,
H-Y., Chen, Y-Y. & Zhang, Y-Q. 2015. Processing
and characterization of powdered silk micro- and nanofibers by ultrasonication. Mater. Sci. Eng. C 48: 444-452.
Zhao,
H-P., Feng, X-Q. & Gao, H. 2007. Ultrasonic technique for extracting nanofibers from nature
materials. Appl. Phys. Lett. 90: 073112.
*Pengarang
untuk surat-menyurat; email: noriznan@upm.edu.my
|