Sains Malaysiana 44(11)(2015): 1593–1598
Influence
of Benzyltriethylammonium Chloride on Biocorrosion Activity of Consortium
Bacteria from Tropical Crude Oil
(Pengaruh Benziltrietilamonium Klorida terhadap Aktiviti
Biokakisan Konsortium Bakteria daripada Minyak Mentah Tropika)
MOHD NAZRI IDRIS1,2*, ABDUL RAZAK DAUD1, NUR AKMA MAHAT1, MOHD HAFIZUDDIN AB GHANI1, FATHUL KARIM SAHRANI2 & NORINSAN KAMIL OTHMAN1
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan, Malaysia
2School of Materials
and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering
Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
3School of Environment
and Natural Resources Science, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 28 Mac 2015/Diterima: 3 Julai 2015
ABSTRACT
The performance of pipeline system used in petroleum industry is
crucially declined by natural microbial activities and demanding extra
operational cost. Requirement on high capability of functional substances is
attracting worldwide research interest. The aim of this paper was to study the
effectiveness of benzyltriethylammonium chloride (BTC)
on reducing the activity of a consortium bacteria consisting of
sulfate-reducing bacteria (C-SRB). C-SRB was
isolated from tropical crude oil and enumeration of this consortium was
measured by viable cell count technique. The effectiveness of BTC was
calculated from potentiodynamic polarization method and biofilm analysis was
performed by scanning electron microscope. The viable cell count technique
indicated that the maximum growth of C-SRB was approximately 160
trillion CFU/mL at 7 days incubation period. BTC was
capable of reducing biocorrosion activity due to adsorption process and
mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial growth,
extracellular polymeric substances and corrosion product. In conclusion, BTC is
capable to inhibit C-SRB activity on biocorrosion of carbon steel pipeline.
Keywords: Carbon steel; consortium bacteria; potentiodynamic
polarization
ABSTRAK
Keupayaan sistem saluran paip yang digunakan dalam industri petroleum
banyak mengalami penyusutan akibat aktiviti mikrob dan memerlukan
kos pengoperasian yang tinggi. Keperluan
keupayaan yang tinggi daripada sebatian berfungsi telah menarik
minat penyelidikan seluruh dunia. Matlamat
kajian ini adalah untuk mengkaji kecekapan benziltrietilamonium
klorida (BTC)
terhadap penurunan aktiviti konsortium bakteria yang mengandungi
bakteria penurun sulfat (C-SRB). C-SRB
telah dipencilkan daripada minyak mentah tropika dan
pengangkaan konsortium ini telah dihitung melalui teknik kiraan
sel boleh hidup. Kecekapan BTC ditentukan daripada kaedah kekutuban
keupayaan dinamik dan analisis biofilem telah dijalankan dengan
menggunakan mikroskop elektron imbasan. Teknik
kiraan sel boleh hidup mendapati nilai pertumbuhan maksimum C-SRB dianggarkan
berjumlah 160 trillion CFU/mL dalam tempoh 7 hari pengeraman.
BTC
didapati berupaya mengurangkan aktiviti biokakisan
melalui proses penjerapan dan pengurangan spesies SRB. Analisis
biofilem membuktikan bahawa aktiviti C-SRB adalah minimum dengan penggunaan
BTC disebabkan kurangnya pertumbuhan bakteria, juga sebatian
polimer ekstrasel dan hasil kakisan. Sebagai kesimpulan,
BTC
didapati berupaya menyekat aktiviti C-SRB dan proses biokakisan pada permukaan
paip keluli karbon.
Kata kunci: Kekutuban keupayaan dinamik; keluli
karbon; konsortium bakteria
RUJUKAN
Abdullah, A., Yahaya, N., Md Noor, N. & Mohd Rasol, R.
2014. Microbial corrosion of Api 5l X-70 carbon steel by Atcc
7757 and consortium of sulfate-reducing bacteria. Journal of
Chemistry 2014(1): 1-7.
Ahamad, I., Prasad, R., Ebenso, E.E.
& Quraishi, M.A. 2012. Electrochemical and quantum chemical study of Albendazole as
corrosion inhibitor for mild steel in hydrochloric acid solution. International
Journal of Electrochemical Science 7: 3436-3452.
Ahmad, Z. 2006. Principles of Corrosion
Engineering and Corrosion Control. Oxford: Butterworth-Heinemann.
Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y.
& Shaban, S.M. 2014. Characterization, surface properties
and biological activity of new prepared cationic surfactants. Journal
of Industrial and Engineering Chemistry 20(4): 1633-1640.
Al-Amiery, A., Kadhum, A., Alobaidy, A.H., Mohamad, A. &
Hoon, P. 2014. Novel corrosion inhibitor for mild steel in Hcl. Materials 7(2):
662-672.
Al-Jaroudi, S.S., Ul-Hamid, A. &
Al-Gahtani, M.M. 2011. Failure of cruide
oil pipeline due to microbiologically induced corrosion. Corrosion
Engineering, Science and Technology 46(4): 568-579.
Al-Sabagh, A.M., Kandil, N.G., Ramadan, O., Amer, N.M.,
Mansour, R. & Khamis, E.A. 2011. Novel cationic surfactants from fatty
acids and their corrosion inhibition efficiency for carbon steel pipelines in 1
M Hcl. Egyptian Journal of Petroleum 20(2): 47-57.
Alabbas, F.M., Spear, J.R., Kakpovbia,
A., Balhareth, N.M., Olson, D.L. & Mishra, B. 2012. Bacterial attachment to metal substrate and its effects on microbiologically-influenced corrosion in transporting
hydrocarbon pipeline. Journal of Pipeline Engineering 11(3): 63-72.
Badawi, A.M., Hegazy, M.A., El-Sawy, A.A., Ahmed, H.M. &
Kamel, W.M. 2010. Novel quaternary ammonium hydroxide cationic surfactants as
corrosion inhibitors for carbon steel and as biocides for sulfate reducing
bacteria (Srb). Materials Chemistry and Physics 124(1): 458-465.
Dkhireche, N., Dahami, A., Rochdi, A., Hmimou, J., Touir,
R., Ebn Touhami, M., El Bakri, M., El Hallaoui, A.,
Anouar, A. & Takenouti, H. 2013. Corrosion and scale inhibition of low
carbon steel in cooling water system by 2-Propargyl- 5-O-Hydroxyphenyltetrazole. Journal of Industrial and Engineering Chemistry 19(6): 1996-2003.
Hegazy, M.A., Abdallah, M., Awad, M.K.
& Rezk, M. 2014. Three novel di-quaternary ammonium
salts as corrosion inhibitors for Api X65 steel
pipeline in acidic solution. Part I: Experimental results. Corrosion Science 81: 54-64.
Idris, M.N., Daud,
A.R. & Othman, N.K. 2015. Effectiveness of benzyl
triethylammonium chloride for corrosion control on carbon steel. Journal
of Applied Science and Agriculture 10(5): 52-57.
Idris, M.N., Daud, A.R., Othman, N.K.
& Jalar, A. 2013. Corrosion control by
benzyl triethylammonium chloride: Effects of temperture and its concentration. International
Journal of Engineering & Technolgy 13(3): 47-51.
Kakooei, S., Mokhtar, C.I. &
Ariwahjoedi, B. 2012. Mechanisms of
microbiologically influenced corrosion: A review. World Applied Sciences
Journal 17(4): 524-531.
Li, F., An, M., Liu, G. & Duan, D.
2009. Effects of
sulfidation of passive film in the presence of Srb on the pitting corrosion
behaviors of stainless steels. Materials Chemistry and Physics 113(2-3):
971-976.
Mahat, N.A., Othman, N.K., Sahrani,
F.K. & Idris, M.N. 2015. Microbial corrosion of carbon steel by tropical environment consortium bacteria
containing Srb. American-Eurasian Journal of Sustainable Agriculture 9(2):
29-34.
Mohamad, N., Jalar, A. & Othman,
N.K. 2014. Surface morphology study on aluminum
alloy after treated with silicate-based corrosion inhibitor from paddy residue. Sains Malaysiana 43(6): 935-940.
Moiseeva, L.S. & Kondrova, O.V. 2005. Biocorrosion
of oil and gas field equipment and chemical methods for its suppression. I. Protection of Metals 41(4): 385-393.
Musa, A.Y., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S.
& Chee, E.P. 2012. Inhibition of aluminum corrosion by phthalazinone and
synergistic effect of halide ion in 1.0 M Hcl. Current Applied Physics 12(1):
325-330.
Negm, N.A., Kandile, N.G., Badr, E.A. & Mohammed, M.A.
2012. Gravimetric and electrochemical evaluation of environmentally friendly
nonionic corrosion inhibitors for carbon steel in 1.0 M Hcl. Corrosion
Science 65: 94- 103.
Ortega Morente, E., Fernández-Fuentes, M.A., Grande Burgos,
M.J., Abriouel, H., Pérez Pulido, R. & Gálvez, A. 2013. Biocide
tolerance in bacteria. International Journal of Food Microbiology 162(1):
13-25.
Sahrani, F.K., Ibrahim, Z., Yahya, A.
& Aziz, M. 2008a. Isolation
and identification of marine sulphate-reducing bacteria, Desulfovibrio Sp.
and Citrobacter freundii from Pasir Gudang, Malaysia. Sains
Malaysiana 37(4): 365-371.
Sahrani, F.K., Madzlan, A.A., Zaharah,
I. & Adibah, Y. 2008b. Surface analysis of marine sulphate reducing bacteria exopolymers
on steel during biocorrosion using X-Ray photoelectron spectroscopy. Sains
Malaysiana 37(2): 131- 135.
Sheng, G-P., Yu, H-Q. & Li,
X-Y. 2010. Extracellular polymeric substances (Eps) of microbial aggregates in
biological wastewater treatment systems: A review. Biotechnology Advances 28(6):
882-894.
Yadav, M., Yadav, P.N. & Sharma, U.
2013. Substituted imidazoles as corrosion
inhibitor for N80 steel in hydrochloric acid. Indian Journal of Chemical
Technology 20: 363- 370.
*Pengarang
untuk surat-menyurat; email: nazriselama@gmail.com
|