Sains Malaysiana 44(2)(2015): 295–300

 

Existence Results for a Family of Equations of Fractional Resolvent

(Keputusan Kewujudan bagi Keluarga Persamaan Pecahan Berperingkat)

 

RABHA W. IBRAHIM*, SAYYEDAH A. QASEM & ZAILAN SIRI

Institute of Mathematical Sciences, University Malaya, 50603 Kuala Lumpur, Malaysia

 

Diserahkan: 4 Jun 2014/Diterima: 25 Julai 2014

 

ABSTRACT

This study deals with the presence and distinction of bounded m-solutions (type mild) for a family of generalized integral and differential equations of spot order with fractional resolvent and indefinite delay.

 

Keywords: Fractional calculus; fractional differential equations; fractional differential operator

 

ABSTRAK

Kajian ini membincangkan kehadiran dan perbezaan terbatas m-penyelesaian (jenis lembut) untuk keluarga integral umum dan persamaan pembezaan titik tertib dengan pecahan berperingkat dan lengah tak tentu.

 

Kata kunci: Kalkulus pecahan; pecahan pembezaan pengoperasi; persamaan pembezaan pecahan

RUJUKAN

Agarwal, R.P., Ahmad, B., Alsaedi, A. & Al-Hutami, H. 2014. On nonlinear fractional q-difference equations involving two fractional orders with three-point non-local boundary conditions. Dyn. Contin. Discrete Im- puls. Syst. Ser. A Math. Anal.21: 135-151.

Agarwal, R.P., dos Santos, J.P. & Cuevas, C. 2012. Analytic resolvent operator and existence results for fractional integro-differential equations. Journal of Abstract Differential Equations and Applications 2(2): 26-47.

Araya, D. & Lizama, C. 2008. Almost automorphic mild solutions to fractional differential equations. Nonlinear Anal. 69: 3692-3705.

Arendt, W., Batty, C.J., Hieber, M. & Neubrander, F. 2011. Vector-valued Laplace Transforms and Cauchy Problems. 2nd ed. Berlin: Birkhäuser, Springer.

Cuevas, C. & Lizama, C. 2008. Almost automorphic solutions to a class of semi linear fractional differential equations. Appl. Math. Lett.21: 1315-1319.

Dhanapalan, V., Thamilselvan, M. & Chandrasekaran, M. 2014. Existence and uniqueness of mild solutions for fractional integrodifferential equations. Appl. Comput Math-Bak. 3(1): 32-37.

Diagana, T. 2009. Existence of solutions to some classes of partial fractional differential equations. Nonlinear Anal. 71: 5269-5300.

Hernandez, E. & McKibben, M. 2005. Some comments on: Existence of solutions of abstract nonlinear second order neutral functional integro-differential equations. Comput. Math. Appl. 50: 655-669.

Ibrahim, R.W. 2014. Solutions to systems of arbitrary -order differential equations in complex domains. Electronic Journal of Differential Equations 46: 1-13.

Ibrahim, R.W. 2013. Modified fractional Cauchy problem in a complex domain. Advances in Difference Equations 149: 1-10.

Ibrahim, R.W. 2012a. Complex transforms for system of fractional differential equations. Abstract and Applied Analysis Artical number 814759.

Ibrahim, R.W. 2012b. Ulam stability for fractional differential equation in complex domain. Abstract and Applied Analysis Artical number 649517.

Ibrahim, R.W. & Jalab, H.A. 2010. Existence of the solution of fractional integral inclusion with time delay. Miskolic Mathematical Journal 2(11): 139-150.

Kilbas, A.A., Srivastava, H.M. & Trujillo, J.J. 2006. Theory and Applications of Fractional Differential Equations. Vol. 204 (North-Holland, Mathematics Studies). Elsevier Science.

Martin, R.H. 1987. Nonlinear Operators and Differential Equations in Banach Spaces. Florida: Robert E. Krieger Publ. Co.

Podlubny, I. 1999. Fractional Differential Equations. London: Acad. Press.

Ponce, R. 2013. Bounded mild solutions to fractional integro-differential equations in Banach spaces. Semigroup Forum 87: 377-392.

 

 

*Pengarang untuk surat-menyurat; email: rabhaibrahim@yahoo.com

   

 

sebelumnya