Sains Malaysiana 44(4)(2015): 537–543

 

Effects of Dietary Protein Level on Growth and Ammonia Excretion of Leopard Coral Grouper, Plectropomus leopardus (Lacepede, 1802)

(Kesan Pemakanan Tahap Protein terhadap Pertumbuhan dan Perkumuhan Amonia

pada Kerapu Bara Plectropomus leopardus (Lacepede, 1802))

 

S. XIA1, Z. SUN1*, S. FENG1, Z. ZHANG2, M.M. RAHMAN3,4 & M. RAJKUMAR3

 

1Tianjin Fisheries Research Institute, Tianjin 300221, P.R. China

 

2Tianjin Fisheries Technology Promotion Station, Tianjin 300221, P.R. China

 

3Institute of Oceanography and Maritime Studies, International Islamic University Malaysia

Kg. Cherok Paloh, 26160 Kuantan, Pahang, Malaysia

 

4Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia

Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

Diserahkan: 3 Julai 2014/Diterima: 25 November 2014

 

ABSTRACT

The effects of dietary protein level on the growth performance and ammonia excretion of the leopard coral grouper, Plectropomus leopardus were investigated for eight weeks. Fish were fed diets with 40, 45, 50, 55 and 60% crude protein levels in separate recirculating systems. Fish fed with the 50% crude protein containing diet showed the best ingestion rate, which was significantly higher than that found in the other groups. As the dietary protein level increased, the specific growth rate increased significantly and it reached the highest level at 50% crude protein containing diet. Based on the results of all measured parameters 50% protein containing diet was the best among all test diets. The regression equation for dietary protein level versus ammonia excretion indicated that the optimal dietary protein level with the least ammonia excretion was 53.14%. More research is still needed to elucidate the effects of 53.14% crude protein containing diet on the specific growth rate, feed conversion ratio, protein efficiency ratio and ingestion rate of leopard coral grouper before recommending this level. Until then, 50% protein containing diet can be recommended for leopard coral grouper culture in the recirculation system.

 

Keywords: Ammonia excretion; dietary protein level; Plectropomus leopardus; water quality

 

ABSTRAK

Kesan tahap protein pemakanan terhadap pertumbuhan dan perkumuhan amonia pada kerapu bara, Plectropomus leopardus telah dikaji selama lapan minggu. Ikan telah diberi makan dengan diet tahap protein mentah 40, 45, 50, 55 dan 60% dalam sistem peredaran air berasingan. Ikan yang diberi makan diet dengan kandungan 50% protein mentah menunjukkan kadar pengambilan terbaik, jauh lebih tinggi daripada yang terdapat di dalam kumpulan-kumpulan lain. Apabila tahap protein dalam diet meningkat, kadar pertumbuhan khusus meningkat dengan ketara dan mencapai tahap tertinggi pada diet yang mengandungi 50% protein mentah. Berdasarkan keputusan semua parameter yang diambil, diet mengandungi 50% protein adalah yang terbaik di antara semua ujian diet. Persamaan regresi untuk tahap protein dalam diet berbanding perkumuhan amonia menunjukkan tahap protein pemakanan yang optimum dengan kurang perkumuhan amonia adalah 53.14%. Lebih banyak kajian perlu dijalankan untuk menjelaskan kesan diet yang mengandungi 53.14% protein mentah terhadap kadar pertumbuhan spesifik, nisbah pertukaran makanan, nisbah kecekapan protein dan kadar pemakanan kerapu bara sebelum ia dapat disyorkan. Sehingga ini, diet yang mengandungi 50% protein dapat disyorkan kepada penternakan kerapu bara dalam sistem peredaran air semula.

 

Kata kunci: Amonia perkumuhan; kualiti air; Plectropomus leopardus; tahap protein pemakanan

 

RUJUKAN

 

Ayling, R.D., Baker, S.E., Peek, M.L., Simon, A.J. & Nicholas, R.J. 2000. Comparison of in vitro activity of danofloxacin, florfenicol, oxytetracycline, spectinomycin and tilmicosin against recent field isolates of Mycoplasma bovis. Veterinary Record 146: 745-747.

Ballantyne, J.S. 2001. Amino acid metabolism. Fish Physiology and Biochemistry 20: 77-107.

Bibiano-Melo, J.F., Lundstedt, L.M., Metón, I., Baanante, I.V. & Moraes, G. 2006. Effects of dietary levels of protein on nitogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comparative Biochemistry and Physiology Part A 145: 181-187.

Cho, C.Y. & Kaushik, S.J. 1985. Effects of protein intake on metabolizable and net energy values of fish diets. In Nutrition and Feeding in Fish, edited by Cowey, C.B., Mackie, A.M. & Bell, J.G. London: Academic Press.

Engin, K. & Carter, C.G. 2001. Ammonia and urea excretion rates of juvenile Australian short-finned eel (Anguilla australis australis) as influenced by dietary protein level. Aquaculture 194: 123-136.

Grasshoff, K. 1999. Methods of Seawater Analysis. 3rd ed. New York: Verlag Chime, Weinheim.

Gunasekera, R.M., de Silva, S.S., Collins, R.A., Gooley, G. & Ingram, B.A. 2000. Effect of dietary protein level on growth and food utilization in juvenile Murray cod Maccullochella peelii peelii (Mitchell). Aquaculture Research 31: 181-187.

Guo, Z., Zhu, X., Liu, J., Han, D., Yang, Y., Lan, Z. & Xie, S. 2012. Effects of dietary protein level on growth performance, nitrogen and energy budget of juvenile hybrid sturgeon, Acipenser baerii +  × A. gueldenstaedtii  . Aquaculture 338-341: 89-95.

Jiang, K., Li, Y., Li, J., Wang, L. & Wang, Y. 2005. Eco-nutrition requirement of protein for juvenile turbot (Scophthalmus maximus L.). Marine Science 29: 65-70.

Kailola, P.J., Williams, M.J., Stewart, P.C., Reichelt, R.E., McNee, A. & Grieve, C. 1993. Australian Fisheries Resources. Canberra, Australia: Bureau of Resource Sciences.

Kenzo, Y., Kazuhisa, Y., Kimio, A., Masayuki, C., Koji, H. & Shinichi, K. 2008. Influence of light intensity on feeding, growth, and early survival of leopard coral grouper (Plectropomus leopardus) larvae under mass–scale rearing conditions. Aquaculture 279: 55-62.

Kim, K., Kayes, T.B. & Amundson, C.H. 1991. Purified diet development and re-evaluation of the dietary protein requirement of fingerling rainbow trout (Oncorhyncus mykiss). Aquaculture 96: 57-67.

Kuiter, R.H. & Tonozuka, T. 2001. Pictorial guide to Indonesian reef fishes. Part 1. Eels-Snappers, Muraenidae-Lutjanidae. Zoonetics, Australia.

Millikin, M.R. 1982. Effects of dietary protein concentration on growth, feed efficiency, and body composition of age-0 striped bass. Transactions of the American Fisheries Society 111: 373-378.

Mohanty, S.S. & Samantaray, K. 1996. Effect of varying levels of dietary protein on the growth performance and feed conversion efficiency of snakehead Channa striata fry. Aquaculture Nutrition 2: 89-94.

National Research Council (NRC) 1993. Nutrient Requirements of Warm Water Fishes and Shellfishes. rev. ed. Washington, DC: National Academy Press.

Rahman, M.M. & Verdegem, M.C.J. 2010. Effects of intra- and interspecific competition on diet, growth and behaviour of Labeo calbasu (Hamilton) and Cirrhinus cirrhosus (Bloch). Applied Animal Behaviour Science 128: 103-108.

Rahman, M.M. & Meyer, C.G. 2009. Effects of food type on diet behaviours of common carp Cyprinus carpio L. in simulated aquaculture pond conditions. Journal of Fish Biology 74: 2269 -2278.

Rahman, M.M. & Verdegem, M.C.J. 2007. Multi-species fishpond and nutrients balance. In Fishponds in Farming Systems, edited by ven der Zijpp, A.J., Verreth, A.J.A., Tri, L.Q., ven Mensvoort, M.E.F., Bosma, R.H. & Beveridge, M.C.M. Netherlands: Wageningen Academic Publishers.

Rahman, M.M., Kadowaki, S., Linn, S.M. & Yohei, Y. 2012. Effects of protein skimming on water quality, bacterial abundance and abalone growth in land based recirculating aquaculture systems. Journal of Fisheries and Aquatic Science 7: 150-161.

Rahman, M.M., Kadowaki, S., Balcombe, S.R. & Wahab, M.A. 2010. Common carp (Cyprinus carpio L.) alter their feeding niche in response to changing food resources: Direct observations in simulated ponds. Ecological Research 25: 303-309.

Rahman, M.M., Jo, Q., Gong, Y.G., Miller, S.A. & Hossain, M.Y. 2008a. A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 285: 78-83.

Rahman, M.M., Verdegem, M., Nagelkerke, L., Wahab, M.A., Milstein, A. & Verreth, J. 2008b. Effects of common carp Cyprinus carpio (L.) and feed addition in rohu Labeo rohita (Hamilton) ponds on nutrient partitioning among fish, plankton and benthos. Aquaculture Research 39: 85-95.

Rahman, M.M., Verdegem, M.C.J. & Wahab, M.A. 2008c. Effects of tilapia (Oreochromis nilotica L.) addition and artificial feeding on water quality, and fish growth and production in rohu-common carp bi-culture ponds. Aquaculture Research 39: 1579-1587.

Rahman, M.M., Verdegem, M.C.J., Nagelkerke, L.A.J., Wahab, M.A. & Verreth, J.A.J. 2008d. Swimming, grazing and social behaviour of rohu Labeo rohita (Hamilton) and common carp Cyprinus carpio (L.) in tanks under fed and non-fed conditions. Applied Animal Behaviour Science 213: 255-264.

Rajkumar, M., Rahman, M.M., Reni Prabha, A. & Phukan, B. 2013. Effect of cholymbi on growth, proximate composition, and digestive enzyme activity of fingerlings of long whiskered catfish, Mystus gulio (Actinopterygii: Siluriformes: Bagridae). Acta Ichthyol Piscat 43: 15-20.

Russell, M. 2007. Protecting common coral trout (Plectropomus leopardus) spawning aggregations in the Great Barrier Reef marine park, Australia. Gulf and Caribbean Fisheries Institute 58: 276-280.

Rychly, J. 1980. Nitrogen balance in trout. II. Nitrogen excretion after feeding diets with varying protein and carbohydrate levels. Aquaculture 20: 343-350.

Shiau, S.Y. & Huang, S.L. 1989. Optimal dietary protein level for hybrid tilapia (Oreochromis niloticus × O. aureus) reared in seawater. Aquaculture 81: 119-127.

Solorzano, L. 1969. Determination of ammonia in natural waters by the phenol hypocholorite method. Limnol. Oceanogr. 14: 799-801.

Stone, D.A., Allan, G.L. & Anderson, A.J. 2003. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). III. The protein-sparing effect of wheat starch based carbohydrates. Aquaculture Research 34: 123 & 134.

Taguchi, S., Ito-Oka, E., Masuyama, K., Kasahara, I. & Goto, K. 1985. Application of organic solvent-soluble membrane filters in the preconcentration and determination of trace elements: Spectrophotometric determination of phosphorus as phosphomolybdenum blue. Talanta 32: 391-394.

van Waarde, A. 1983. Aerobic and anaerobic ammonia production by fish. Comparative Biochemistry and Physiology 74: 675-684.

Xia, S., Li, Y., Wang, W., Rajkumar, M., Kumaraguru, vasagam, K.P. & Wang, H. 2010. Influence of dietary protein levels on growth, digestibility, digestive enzyme activity and stress tolerance in white-leg shrimp, Litopenaeus vannamei (Boone, 1931), reared in high-density tank trials. Aquaculture Research 41: 1845-1854.

Yang, M., Wang, Y., Fu, S., Shen, M., Zheng, F., Wang, G., Yin, S. & Li, X. 2012. Effects of different temperatures and salinities and pH values on the early development of Plectropomus leopardus Lacépède. Journal of Tropical Ecology 3: 104-108.

Yang, S., Liou, C. & Liu, F. 2002. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture 213: 363-372.

Zhu, Z.Y. & Yue, G.H. 2008. The complete mitochondrial genome of red grouper Plectropomus leopardus and its applications in identification of grouper species. Aquaculture 276: 44-49.

 

 

*Pengarang untuk surat-menyurat; email: profzsun@gmail.com

 

 

sebelumnya